A. | $\frac{4π}{3}$ | B. | 4π | C. | 12π | D. | $4\sqrt{3}π$ |
分析 設(shè)OAB平面與棱l交于點C,則△OAC為直角三角形,利用等面積,求出球的半徑,從而可求球的體積.
解答 解:設(shè)OAB平面與棱l交于點C,則△OAC為直角三角形,且AB⊥OC,OC=2
設(shè)OA=x,AC=y,則由等面積可得xy=$\sqrt{3}$
∵x2+y2=4
∴$\left\{\begin{array}{l}{x=1}\\{y=\sqrt{3}}\end{array}\right.$或$\left\{\begin{array}{l}{x=\sqrt{3}}\\{y=1}\end{array}\right.$
$\left\{\begin{array}{l}{x=1}\\{y=\sqrt{3}}\end{array}\right.$時,∠ACO=30°,∠ACB=60°,滿足題意,球的體積為$\frac{4}{3}$π;
$\left\{\begin{array}{l}{x=\sqrt{3}}\\{y=1}\end{array}\right.$時,∠ACO=60°,∠ACB=120°,不滿足題意,
故選A.
點評 本題考查球的體積,考查學(xué)生的計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a=b b=a | B. | c=b b=a a=c | C. | b=a a=b | D. | a=c c=b b=a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -2 | C. | 2 | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -742 | B. | -49 | C. | 18 | D. | 188 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 100 | B. | 50 | C. | $\frac{99}{2}$ | D. | 0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com