14.如圖,四棱錐P-ABCD的底面ABCD是矩形,PA⊥底面ABCD,E、F分別是PC、PD的中點,PA=$\sqrt{3}$AD.
(1)在線段BC上求作一點G,使得平面EFG∥平面PAB;
(2)在(1)的條件下,求平面EFG與平面PCD所成的二面角的大。

分析 (1)取BC中點G,得到EG∥PB,EF∥DC,EF∥AB,從而得到在線段BC上取點G,使得平面EFG∥平面PAB.
(2)以A為原點,AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標系,利用向量法能求出平面EFG與平面PCD所成的二面角的大小為45°.

解答 解:(1)取BC中點G,則平面EFG∥平面PAB.
證明如下:
∵E、F分別是PC、PD的中點,G是BC中點,
∴EG∥PB,EF∥DC,
∵底面ABcD是矩形,∴AB∥CD,∴EF∥AB,
∵AB∩PB=B,EF∩EG=E,AB、PB?平面PAB,EF、EG?平面EFG,
∴在線段BC上取點G,使得平面EFG∥平面PAB.
(2)以A為原點,AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標系,
∵平面EFG∥平面PAB,∴平面EFG的法向量即平面PAB的法向量,即$\overrightarrow{n}$=(0,1,0),
設PA=$\sqrt{3}$AD=$\sqrt{3}$,AB=t,
則P(0,0,$\sqrt{3}$),C(t,$\sqrt{3}$,0),D(0,$\sqrt{3}$,0),
$\overrightarrow{PC}$=(t,$\sqrt{3}$,-$\sqrt{3}$),$\overrightarrow{PD}$=(0,$\sqrt{3}$,-$\sqrt{3}$),
設平面PCD的法向量$\overrightarrow{m}$=(a,b,c),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{PC}=ta+\sqrt{3}b-\sqrt{3}c=0}\\{\overrightarrow{m}•\overrightarrow{PD}=\sqrt{3}b-\sqrt{3}c=0}\end{array}\right.$,取b=1,得$\overrightarrow{m}$=(0,1,1),
設平面EFG與平面PCD所成的二面角的大小為θ,
則cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,∴θ=45°,
∴平面EFG與平面PCD所成的二面角的大小為45°.

點評 本題考查面面平行的證明中,考查二面角的大小的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.對于任意實數(shù)a,b,已知|a-b|≤1,|2a-1|≤1,且恒有|4a-3b+2|≤m,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知f(x)=3$\sqrt{2}$cos(x+φ)+sinx,x∈R,φ∈(-$\frac{π}{2}$,$\frac{π}{2}}$)的圖象過(${\frac{π}{2}$,4)點,則f(x)在區(qū)間[0,$\frac{π}{2}}$]上的值域為( 。
A.[-5,5]B.[3,5]C.[3,4]D.[2,5]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖三棱錐P-ABC中,PC⊥平面ABC,PC=$\frac{2}{\sqrt{3}}$,D是BC的中點,且△ADC是邊長為2的正三角形,求二面角P-AB-C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,ABCD-A1B1C1D1是正四棱柱.
(Ⅰ)求證:BD⊥平面ACC1A1;
(Ⅱ)若C1C=$\frac{\sqrt{6}}{2}$AB,求二面角C1-BD-C的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.點P是邊長為2的正△ABC的邊BC的中點,將△ACP沿AP折起,使得二面角C-AP-B為直二面角,點M為線段AC的中點,點N在線段BC上,且BN=2NC.
(Ⅰ)求四棱錐P-ABNM的體積;
(Ⅱ)求二面角M-PN-B的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.四面體ABCD及其三視圖如圖所示,點E、F、G、H分別是棱AB、BD、DC、CA的中點.
(1)證明:四邊形EFGH是矩形;
(2)求四面體ABCD的表面積.
(3)求直線AB與平面EFGH夾角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=aexlnx在x=1處的切線與直線x+2ey=0垂直
(Ⅰ)求a的值;
(Ⅱ)證明:xf(x)>1-5ex-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知關于x的不等式|2x-m|<1的整數(shù)解有且僅有一個為2,其中m∈Z.
(1)求m的值;
(2)設ab=m,a>b>0,證明:$\frac{{{a^2}+{b^2}}}{a-b}$≥4$\sqrt{2}$.

查看答案和解析>>

同步練習冊答案