分析 (1)求出當(dāng)a=1時(shí),f(x)的導(dǎo)數(shù),判斷符號(hào),進(jìn)而得到是否存在極值;
(2)存在一個(gè)x0∈[1,e]使得f(x0)>g(x0),則ax0>2lnx0,等價(jià)于a>$\frac{2ln{x}_{0}}{{x}_{0}}$,令F(x)=$\frac{2lnx}{{x}^{\;}}$,等價(jià)于“當(dāng)x∈[1,e]時(shí),a>F(x)min”.
解答 解:(Ⅰ)當(dāng)a=1時(shí),f(x)=x-$\frac{1}{x}$-2lnx,x>0,
f′(x)=1+$\frac{1}{{x}^{2}}-\frac{2}{x}$=$\frac{(x-1)^{2}}{{x}^{2}}$≥0.
即有f(x)在(0,+∞)遞增,函數(shù)f(x)不存在極值;
(2)因?yàn)榇嬖谝粋(gè)x0∈[1,e]使得f(x0)>g(x0),
則ax0>2lnx0,等價(jià)于a>$\frac{2ln{x}_{0}}{{x}_{0}}$,
令F(x)=$\frac{2lnx}{{x}^{\;}}$,等價(jià)于“當(dāng)x∈[1,e]時(shí),a>F(x)min”.
得F′(x)=$\frac{2(1-lnx)}{{x}^{2}}$
可得到當(dāng)x∈[1,e]時(shí),F(xiàn)′(x)≥0,所以F(x)在[1,e]上單調(diào)遞增.
當(dāng)所以F(x)min=F(1)=0,因此a>0.
∴實(shí)數(shù)a的取值范圍為(0,+∞).
點(diǎn)評(píng) 題考查導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)研究函數(shù)單調(diào)性及求函數(shù)的最值問題,考查學(xué)生分析問題解決問題的能力,對(duì)于“能成立”問題及“恒成立”問題往往轉(zhuǎn)化為函數(shù)最值解決.屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | ||||
C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{\sqrt{6}}{3}$ | B. | $\frac{\sqrt{6}}{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | -$\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | e2017f(-2017)<f(0),f(2017)>e2017f(0) | B. | e2017f(-2017)<f(0),f(2017)<e2017f(0) | ||
C. | e2017f(-2017)>f(0),f(2017)<e2017f(0) | D. | e2017f(-2017)>f(0),f(2017)>e2017f(0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a≤1 | B. | a<1 | C. | a≥2 | D. | a>2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com