4.已知f(x)為R上的可導(dǎo)函數(shù),且對(duì)任意x∈R,均有f(x)>f′(x),則以下說法正確的是(  )
A.e2017f(-2017)<f(0),f(2017)>e2017f(0)B.e2017f(-2017)<f(0),f(2017)<e2017f(0)
C.e2017f(-2017)>f(0),f(2017)<e2017f(0)D.e2017f(-2017)>f(0),f(2017)>e2017f(0)

分析 由題意,首先構(gòu)造函數(shù)F(x)=$\frac{f(x)}{{e}^{x}}$,對(duì)其求導(dǎo)并判斷單調(diào)性,利用此性質(zhì)判斷-2017,0,的函數(shù)值大。

解答 解:設(shè)F(x)=$\frac{f(x)}{{e}^{x}}$,
則F'(x)=[$\frac{f(x)}{e^x}$]'=$\frac{f'(x){e}^{x}-f(x){e}^{x}}{({e}^{x})^{2}}=\frac{f'(x)-f(x)}{{e}^{x}}$,因?yàn)閒(x)>f'(x),
所以F'(x)<0,所以F(x)為減函數(shù),
因?yàn)?2017<0,2017>0,
所以F(-2017)>F(0),F(xiàn)(2017)<F(0),
即$\frac{f(-2017)}{{e}^{-2017}}>\frac{f(0)}{{e}^{0}}$,所以e2017f(-2017)>f(0);
$\frac{f(2017)}{{e}^{2017}}<\frac{f(0)}{{e}^{0}}$,即f(2017)<e2017f(0);
故選C.

點(diǎn)評(píng) 本題考查了利用函數(shù)的單調(diào)性判斷函數(shù)值的大小;關(guān)鍵是正確構(gòu)造F(x),利用其單調(diào)性得到所求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.關(guān)于x的不等式|x-1|-|x-3|>a2-3a的解集為非空數(shù)集,則實(shí)數(shù)a的取值范圍是(  )
A.1<a<2B.$\frac{{3-\sqrt{17}}}{2}<a<\frac{{3+\sqrt{17}}}{2}$C.a<1或a>2D.a≤1或a≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知命題p:若實(shí)數(shù)x,y滿足x2+y2=0,則x,y全為0;命題q:若a>b,則$\frac{1}{a}$<$\frac{1}$,給出下列四個(gè)命題:①p∧q;②p∨q;③¬p;④¬q.
其中真命題是②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.要得到函數(shù)y=$\sqrt{2}$sinx的圖象,只需將函數(shù)y=$\sqrt{2}$cos(2x-$\frac{π}{4}$)的圖象上所有的點(diǎn)( 。
A.橫伸長到原來的2倍,再向左平移$\frac{π}{8}$
B.橫伸長到原來的2倍,再向右平移$\frac{π}{4}$個(gè)
C.橫縮短到原來的$\frac{1}{2}$倍,再向右平移$\frac{π}{4}$
D.橫縮短到原來的$\frac{1}{2}$倍,再向左平移$\frac{π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在數(shù)列{an}中,a1=1,an=$\frac{n-1}{n}$an-1(n≥2),則通項(xiàng)公式an等于(  )
A.$\frac{n-1}{n}$B.$\frac{1}{n}$C.$\frac{n}{n-1}$D.$\frac{n+1}{n}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(x)=a(x-\frac{1}{x})-2lnx$,a∈R.
(1)若a=1,判斷函數(shù)f(x)是否存在極值,若存在,求出極值;若不存在,說明理由;
(2)設(shè)函數(shù)$g(x)=-\frac{a}{x}$.若至少存在一個(gè)x0∈[1,e],使得f(x0)>g(x0)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={x|x2-6x+5≤0},B={x||2x-3|<1},則A∩B=( 。
A.(1,2)B.[1,2)C.(2,5]D.[2,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體的體積為( 。
A.$\frac{2π+1}{3}$B.$\frac{4π+1}{3}$C.$\frac{2π+3}{3}$D.$\frac{2π+2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖所示,在三棱柱ABC-A1B1C1中,AA1B1B為正方形,BB1C1C為菱形,B1C⊥AC1
(Ⅰ)求證:平面AA1B1B⊥平面BB1C1C;
(Ⅱ)若D是CC1中點(diǎn),∠ADB是二面角A-CC1-B的平面角,求直線AC1與平面ABC所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案