10.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,點P滿足|PF1|-|PF2|=2a,若$\overrightarrow{PM}$+$\overrightarrow{{F}_{1}M}$=$\overrightarrow{0}$,且M(0,b),則雙曲線C的漸近線方程為( 。
A.y=±2xB.y=±$\sqrt{5}$xC.y=±2$\sqrt{2}$xD.y=±$\sqrt{3}$x

分析 利用已知條件求出P的坐標,代入雙曲線方程得到a,b 的關系式,然后求解漸近線方程.

解答 解:雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,點P滿足|PF1|-|PF2|=2a,
若$\overrightarrow{PM}$+$\overrightarrow{{F}_{1}M}$=$\overrightarrow{0}$,且M(0,b),
可得P(c,2b),
則:$\frac{{c}^{2}}{{a}^{2}}-\frac{4^{2}}{^{2}}=1$,解得c2=5a2,可得b2=4a2,即b=2a,
雙曲線C的漸近線方程為:y=±2x.
故選:A.

點評 本題考查雙曲線的簡單性質的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=lnx-mx2+(1-2m)x+1
(I)當m=1時,求曲線f(x)在點(1,f(1))處的切線方程;
(II)若m∈Z,關于x的不等式f(x)≤0恒成立,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.定義在R上的函數(shù)f(x)的導函數(shù)為f'(x),且f(x)+xf'(x)<xf(x)對x∈R恒成立,則(  )
A.$\frac{2}{e}f(2)<f(1)$B.$\frac{2}{e}f(2)>f(1)$C.f(1)>0D.f(-1)>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.我國魏晉期間的偉大的數(shù)學家劉徽,是最早提出用邏輯推理的方式來論證數(shù)學命題的人,他創(chuàng)立了“割圓術”,得到了著名的“徽率”,即圓周率精確到小數(shù)點后兩位的近似值3.14.如圖就是利用“割圓術”的思想設計的一個程序框圖,則輸出的求n的值為(參考數(shù)據(jù):sin15°=0.2588,sin7.5°=0.1305)( 。
A.12B.24C.36D.48

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知f(x)=|ax-4|-|ax+8|,a∈R,若f(x)≤k恒成,求k的取值范圍[12,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知不等式|2x-3|<x與不等式x2-mx+n<0(m,n∈R)的解集相同.
(Ⅰ)求m-n;
(Ⅱ)若a,b,c∈(0,1),且ab+bc+ac=m-n,求a+b+c的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.根據(jù)如圖所示的等高條形圖回答,吸煙與患肺病有關系.(“有”或“沒有”)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知正三棱錐A-BCD中,BC=3$\sqrt{2}$,AB=2$\sqrt{6}$,則三棱錐外接球的表面積為32π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設f(x)是定義在R上的奇函數(shù),當x<0時,f(x)=2x+1,則f(0)+f(1)=(  )
A.$-\frac{3}{2}$B.1C.$\frac{1}{2}$D.5

查看答案和解析>>

同步練習冊答案