1.定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),且f(x)+xf'(x)<xf(x)對(duì)x∈R恒成立,則( 。
A.$\frac{2}{e}f(2)<f(1)$B.$\frac{2}{e}f(2)>f(1)$C.f(1)>0D.f(-1)>0

分析 構(gòu)造函數(shù)g(x)=$\frac{xf(x)}{{e}^{x}}$,求導(dǎo),判斷g(x)的單調(diào)性,根據(jù)單調(diào)性即可判斷.

解答 解:∵g(x)=$\frac{xf(x)}{{e}^{x}}$,
∴g′(x)=$\frac{f(x)-xf(x)+xf′(x)}{{e}^{x}}$,
∵f(x)+xf'(x)<xf(x),
∴g′(x)<0,
∴g(x)在R上為減函數(shù),
∴g(2)<g(1),
∴$\frac{2f(2)}{{e}^{2}}$<$\frac{f(1)}{e}$,
即$\frac{2f(2)}{e}$<f(1),
故選:A

點(diǎn)評(píng) 本題主要考查導(dǎo)數(shù)與函數(shù)的單調(diào)性關(guān)系,以及利用條件構(gòu)造函數(shù),考查學(xué)生的解題構(gòu)造能力和轉(zhuǎn)化思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知f($\frac{1}{{2}^{n+1}}$)=$\frac{1}{2}$f($\frac{1}{{2}^{n}}$)-$\frac{1}{{2}^{n+1}}$,f($\frac{1}{2}$)=-$\frac{1}{2}$,令Un=$\frac{f(\frac{1}{{2}^{n}})}{n}$,則{Un}的前n項(xiàng)和Tn=$\frac{1}{{2}^{n}}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)$f(x)=\frac{(4x+a)lnx}{3x+1}$,曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x+y+1=0垂直.
(1)求a的值;
(2)若對(duì)于任意的x∈[1,+∞),f(x)≤m(x-1)恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$+2$\overrightarrow$=(2,-4),3$\overrightarrow{a}$-$\overrightarrow$=(-8,16),則向量$\overrightarrow{a}$,$\overrightarrow$的夾角的大小為π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在公差不為0的等差數(shù)列{an}中,a22=a3+a6,且a3為a1與a11的等比中項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=(-1)n$\frac{n}{({a}_{n}-\frac{1}{2})({a}_{n+1}-\frac{1}{2})}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow$|=3,|$\overrightarrow{a}$|=2|$\overrightarrow-\overrightarrow{a}$|,若|$\overrightarrow{a}$+λ$\overrightarrow$|≥3恒成立,則實(shí)數(shù)λ的取值范圍為(-∞,-3]∪[$\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在平面直角坐標(biāo)系中.圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosα}\\{y=3+2sinα}\end{array}\right.$(α為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,點(diǎn)D的極坐標(biāo)為(ρ1,π).
(1)求圓C的極坐標(biāo)方程;
(2)過(guò)點(diǎn)D作圓C的切線,切點(diǎn)分別為A,B,且∠ADB=60°,求ρ1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P滿足|PF1|-|PF2|=2a,若$\overrightarrow{PM}$+$\overrightarrow{{F}_{1}M}$=$\overrightarrow{0}$,且M(0,b),則雙曲線C的漸近線方程為(  )
A.y=±2xB.y=±$\sqrt{5}$xC.y=±2$\sqrt{2}$xD.y=±$\sqrt{3}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.有限與無(wú)限轉(zhuǎn)化是數(shù)學(xué)中一種重要思想方法,如在《九章算術(shù)》方田章圓田術(shù)(劉徽注)中:“割之又割以至于不可割,則與圓合體而無(wú)所失矣.”說(shuō)明“割圓術(shù)”是一種無(wú)限與有限的轉(zhuǎn)化過(guò)程,再如$\sqrt{2+\sqrt{2+\sqrt{2+…}}}$中“…”即代表無(wú)限次重復(fù),但原式卻是個(gè)定值x.這可以通過(guò)方程$\sqrt{2+x}$=x確定出來(lái)x=2,類似地可以把循環(huán)小數(shù)化為分?jǐn)?shù),把0.$\stackrel{•}{3}\stackrel{•}{6}$化為分?jǐn)?shù)的結(jié)果為$\frac{4}{11}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案