11.已知sinα=$\frac{3}{5}$,且α∈($\frac{π}{2}$,π).
(1)求tan(α+$\frac{π}{4}$)的值;
(2)若β∈(0,$\frac{π}{2}$),且cos(α-β)=$\frac{1}{3}$,求cosβ的值.

分析 (1)利用同角三角函數(shù)基本關(guān)系式可求cosα,tanα的值,進(jìn)而利用兩角和的正切函數(shù)公式即可化簡(jiǎn)求值.
(2)由已知可求范圍α-β∈(0,π),利用同角三角函數(shù)基本關(guān)系式可求sin(α-β)的值,由β=α-(α-β),利用兩角差的余弦函數(shù)公式即可計(jì)算得解.

解答 (本題滿(mǎn)分為12分)
解:(1)∵sinα=$\frac{3}{5}$,且α∈($\frac{π}{2}$,π),
∴cosα=$-\frac{4}{5}$,…(2分)
∴tanα=$\frac{sinα}{cosα}$=-$\frac{3}{4}$,…(4分)
∴tan(α+$\frac{π}{4}$)=$\frac{tanα+1}{1-tanα}$=$\frac{1}{7}$.…(6分)
(2)∵α∈($\frac{π}{2}$,π),β∈(0,$\frac{π}{2}$),
∴α-β∈(0,π),…(7分)
又∵cos(α-β)=$\frac{1}{3}$,
∴sin(α-β)=$\frac{2\sqrt{2}}{3}$,…(9分)
∴cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β) …(11分)
=(-$\frac{4}{5}$)×$\frac{1}{3}$+$\frac{3}{5}$×$\frac{2\sqrt{2}}{3}$=$\frac{6\sqrt{2}-4}{15}$.…(12分)

點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角和的正切函數(shù)公式,兩角差的余弦函數(shù)公式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知向量$\overrightarrow{a}$=(2sinx,$\sqrt{3}$cosx),$\overrightarrow$=(-sinx,2sinx),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a、b、c分別是角A、B、C的對(duì)邊,若角C為銳角,且f($\frac{C}{2}$-$\frac{π}{12}$)=$\frac{1}{3}$,a=$\sqrt{5}$,S△ABC=2$\sqrt{5}$,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知集合A={x|2x-6≤2-2x≤1},B={x|x∈A∩N},C={x|a≤x≤a+1}.
(Ⅰ)寫(xiě)出集合B的所有子集;
(Ⅱ)若A∩C=C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知半徑為$\sqrt{2}$的圓C,其圓心在射線(xiàn)y=-2x(x<0)上,且與直線(xiàn)x+y+1=0相切.
(1)求圓C的方程;
(2)從圓C外一點(diǎn)P(x0,y0))向圓引切線(xiàn)PM,M為切點(diǎn),O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求△PMC面積的最小值,并求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=$\sqrt{3}$,AA1=2,AD=1,E、F分別是AA1和BB1的中點(diǎn),G是DB上的點(diǎn),且DG=2GB.
(Ⅰ)求三棱錐B1-EBC的體積;
(Ⅱ)作出長(zhǎng)方體ABCD-A1B1C1D1被平面EB1C所截的截面(只要作出,說(shuō)明結(jié)果即可);
(Ⅲ)求證:GF∥平面EB1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知F1,F(xiàn)2為雙曲線(xiàn)$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的交點(diǎn),過(guò)F2作垂直于x軸的直線(xiàn)交雙曲線(xiàn)于點(diǎn)P和Q,且△F1PQ為正三角形,則雙曲線(xiàn)的漸近線(xiàn)方程為y=±$\sqrt{2}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.如圖是某幾何體的三視圖,其正視圖、俯視圖均為直徑為2的半圓,則該幾何體的表面積為(  )
A.B.C.D.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知f(x)=|x-a|+|x-3|.
(1)當(dāng)a=1時(shí),求f(x)的最小值;
(2)若不等式f(x)≤3的解集非空,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖,在△ABC中,AD⊥AB,$\overrightarrow{BC}$=2$\sqrt{3}$$\overrightarrow{BD}$,|$\overrightarrow{AD}$|=1,則$\overrightarrow{AC}$•$\overrightarrow{AD}$=( 。
A.2$\sqrt{3}$B.$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.-2$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案