9.已知函數(shù)f(x)=xex-mx+m,若f(x)<0的解集為(a,b),其中b<0;不等式在(a,b)中有且只有一個整數(shù)解,則實數(shù)m的取值范圍是( 。
A.$(\frac{2}{{3{e^2}}},\frac{1}{2e})$B.$(\frac{2}{{3{e^2}}},\frac{1}{e})$C.$[\frac{2}{{3{e^2}}},\frac{1}{2e})$D.$[\frac{2}{{3{e^2}}},\frac{1}{e})$

分析 設g(x)=xex,y=ax-a,求出g(x)的最小值,結(jié)合函數(shù)的圖象求出m的范圍即可.

解答 解:設g(x)=xex,y=mx-m,
由題設原不等式有唯一整數(shù)解,
即g(x)=xex在直線y=mx-m下方,
g′(x)=(x+1)ex,
g(x)在(-∞,-1)遞減,在(-1,+∞)遞增,
故g(x)min=g(-1)=-$\frac{1}{e}$,y=mx-m恒過定點P(1,0),
結(jié)合函數(shù)圖象得KPA≤m<KPB,
即$\frac{2}{3{e}^{2}}$≤m<$\frac{1}{2e}$,
,
故選:C.

點評 本題考查了求函數(shù)的最值問題,考查數(shù)形結(jié)合思想,是一道中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

19.設數(shù)列{an}的首項a1為常數(shù),且an+1=3n-2an,(n∈N*
(1)證明:{an-$\frac{{3}^{n}}{5}$}是等比數(shù)列;
(2)若a1=$\frac{3}{2}$,{an}中是否存在連續(xù)三項成等差數(shù)列?若存在,寫出這三項,若不存在說明理由.
(3)若{an}是遞增數(shù)列,求a1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.天氣預報說,未來三天每天下雨的概率都是0.6,用1、2、3、4表示不下雨,用5、6、7、8、9、0表示下雨,利用計算機生成下列20組隨機數(shù),則未來三天恰有兩天下雨的概率大約是0.4.
757 220  582 092 103 000 181 249  414  993
010 732 680  596 761 835 463 521 186  289.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.某公司制定了一個激勵銷售人員的獎勵方案:當銷售利潤不超過8萬元時,按銷售利潤的15%進行獎勵;當銷售利潤超過8萬元時,若超出A萬元,則超出部分按log5(2A+1)進行獎勵.記獎金為y(單位:萬元),銷售利潤為x(單位:萬元).
(1)寫出獎金y關(guān)于銷售利潤x的關(guān)系式;
(2)如果業(yè)務員小江獲得3.2萬元的獎金,那么他的銷售利潤是多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若實數(shù)x,y滿足不等式組$\left\{{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}}\right.$則2x+4y的最小值是( 。
A.6B.-6C.4D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知直線l1:$\left\{\begin{array}{l}x=t\\ y=\sqrt{3}t\end{array}$(t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立直角坐標系,圓C1:ρ2-2$\sqrt{3}$ρcosθ-4ρsinθ+6=0.
(1)求圓C1的直角坐標方程,直線l1的極坐標方程;
(2)設l1與C1的交點為M,N,求△C1MN的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知α∈($\frac{π}{2}$,π),且cosα=-$\frac{5}{13}$,則$\frac{tan(α+\frac{π}{2})}{cos(α+π)}$=( 。
A.$\frac{12}{13}$B.-$\frac{12}{13}$C.$\frac{13}{12}$D.-$\frac{13}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{1-x}{e^x}$.
(1)求曲線y=f(x)在點(0,f(0))處的切線方程和函數(shù)f(x)的極值:
(2)若對任意x1,x2∈[a,+∞),都有f(x1)-f(x2)≥-$\frac{1}{e^2}$成立,求實數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知正數(shù)a,b滿足$\frac{1}{a}$+$\frac{9}$=$\sqrt{ab}$-5,則ab的最小值為36.

查看答案和解析>>

同步練習冊答案