A. | $(\frac{2}{{3{e^2}}},\frac{1}{2e})$ | B. | $(\frac{2}{{3{e^2}}},\frac{1}{e})$ | C. | $[\frac{2}{{3{e^2}}},\frac{1}{2e})$ | D. | $[\frac{2}{{3{e^2}}},\frac{1}{e})$ |
分析 設g(x)=xex,y=ax-a,求出g(x)的最小值,結(jié)合函數(shù)的圖象求出m的范圍即可.
解答 解:設g(x)=xex,y=mx-m,
由題設原不等式有唯一整數(shù)解,
即g(x)=xex在直線y=mx-m下方,
g′(x)=(x+1)ex,
g(x)在(-∞,-1)遞減,在(-1,+∞)遞增,
故g(x)min=g(-1)=-$\frac{1}{e}$,y=mx-m恒過定點P(1,0),
結(jié)合函數(shù)圖象得KPA≤m<KPB,
即$\frac{2}{3{e}^{2}}$≤m<$\frac{1}{2e}$,
,
故選:C.
點評 本題考查了求函數(shù)的最值問題,考查數(shù)形結(jié)合思想,是一道中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6 | B. | -6 | C. | 4 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{12}{13}$ | B. | -$\frac{12}{13}$ | C. | $\frac{13}{12}$ | D. | -$\frac{13}{12}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com