如圖,橢圓E:=1(a>b>0)的左焦點(diǎn)為F1,右焦點(diǎn)為F2,離心率e=.過(guò)F1的直線交橢圓于A、B兩點(diǎn),且△ABF2的周長(zhǎng)為8.

(1) 求橢圓E的方程;

(2) 設(shè)動(dòng)直線l:y=kx+m與橢圓E有且只有一個(gè)公共點(diǎn)P,且與直線x=4相交于點(diǎn)Q.試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過(guò)點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.


解:(1) 因?yàn)锳B+AF2+BF2=8,

即AF1+F1B+AF2+BF2=8,(1分)

又AF1+AF2=BF1+BF2=2a,(2分)

所以4a=8,a=2.

又因?yàn)閑=,即,所以c=1,(3分)

所以b=.

故橢圓E的方程是=1.(4分)

(2) 由

消去y得(4k2+3)x2+8kmx+4m2-12=0.(5分)

因?yàn)閯?dòng)直線l與橢圓E有且只有一個(gè)公共點(diǎn)P(x0,y0),所以m≠0且Δ=0,(6分)

即64k2m2-4(4k2+3)(4m2-12)=0,

化簡(jiǎn)得4k2-m2+3=0.(*)(7分)

此時(shí)x0=-,y0=kx0+m=

所以P

得Q(4,4k+m).(9分)

假設(shè)平面內(nèi)存在定點(diǎn)M滿足條件,由圖形對(duì)稱性知,點(diǎn)M必在x軸上.(10分)

設(shè)M(x1,0),則·=0對(duì)滿足(*)式的m,k恒成立.

+3=0,

整理,得(4x1-4)+x-4x1+3=0.(**)(12分)

由于(**)式對(duì)滿足(*)式的m,k恒成立,

所以解得x1=1.(13分)

故存在定點(diǎn)M(1,0),使得以PQ為直徑的圓恒過(guò)點(diǎn)M.(14分)


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:


sin2(π+α)-cos(π+α)·cos(-α)+1=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


 已知曲線E:ax2+by2=1(a>0,b>0),經(jīng)過(guò)點(diǎn)的直線l與曲線E交于點(diǎn)A、B,且

(1) 若點(diǎn)B的坐標(biāo)為(0,2),求曲線E的方程;

(2) 若a=b=1,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


 以雙曲線-3x2+y2=12的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn)的橢圓的方程是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


在平面直角坐標(biāo)系xOy中,橢圓C:=1(a>b>0)的右焦點(diǎn)為F(4m,0)(m>0,m為常數(shù)),離心率等于0.8,過(guò)焦點(diǎn)F、傾斜角為θ的直線l交橢圓C于M、N兩點(diǎn).

(1) 求橢圓C的標(biāo)準(zhǔn)方程;

(2) 若θ=90°,,求實(shí)數(shù)m;

(3) 試問(wèn)的值是否與θ的大小無(wú)關(guān),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


 設(shè)A1、A2與B分別是橢圓E:=1(a>b>0)的左、右頂點(diǎn)與上頂點(diǎn),直線A2B與圓C:x2+y2=1相切.

(1) 求證:=1;

(2) P是橢圓E上異于A1、A2的一點(diǎn),若直線PA1、PA2的斜率之積為-,求橢圓E的方程;

(3) 直線l與橢圓E交于M、N兩點(diǎn),且=0,試判斷直線l與圓C的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


拋物線y2=-8x的準(zhǔn)線方程是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


已知拋物線y2=2px(p>0)的焦點(diǎn)為F,P、Q是拋物線上的兩個(gè)點(diǎn),若△PQF是邊長(zhǎng)為2的正三角形,則p的值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


 如圖,在平面直角坐標(biāo)系xOy中,已知F1,F(xiàn)2分別是橢圓E:=1(a>b>0)的左、右焦點(diǎn),A,B分別是橢圓E的左、右頂點(diǎn),且=0.

(1) 求橢圓E的離心率;

(2) 已知點(diǎn)D(1,0)為線段OF2的中點(diǎn),M為橢圓E上的動(dòng)點(diǎn)(異于點(diǎn)A、B),連結(jié)MF1并延長(zhǎng)交橢圓E于點(diǎn)N,連結(jié)MD、ND并分別延長(zhǎng)交橢圓E于點(diǎn)P、Q,連結(jié)PQ,設(shè)直線MN、PQ的斜率存在且分別為k1、k2,試問(wèn)是否存在常數(shù)λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案