11.把函數(shù)f(x)=cos2($\frac{π}{2}$x-$\frac{π}{6}$)的圖象向左平移$\frac{1}{3}$個單位后得到的函數(shù)為g(x),則以下結(jié)論中正確的是( 。
A.g($\frac{1}{5}$)>g($\frac{8}{5}$)>0B.g($\frac{1}{5}$)$>0>g(\frac{8}{5})$C.g($\frac{8}{5}$)>g($\frac{1}{5}$)>0D.g($\frac{1}{5}$)=g($\frac{8}{5}$)>0

分析 利用三角函數(shù)的恒等變換求得f(x)的解析式,利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律求得g(x)的解析式,再利用誘導(dǎo)公式、正弦函數(shù)的單調(diào)性,可得g($\frac{1}{5}$) 和g($\frac{8π}{5}$) 大小關(guān)系.

解答 解:把函數(shù)f(x)=cos2($\frac{π}{2}$x-$\frac{π}{6}$)=$\frac{1+cos(πx-\frac{π}{3})}{2}$ 的圖象向左平移$\frac{1}{3}$個單位后,
得到的函數(shù)為g(x)=$\frac{1+cos[π(x+\frac{1}{3})-\frac{π}{3}]}{2}$=$\frac{1+cosπx}{2}$的圖象,
故有g(shù)($\frac{1}{5}$)=$\frac{1}{2}$+$\frac{1}{2}$cos$\frac{π}{5}$=$\frac{1}{2}$+cos($\frac{π}{2}$-$\frac{3π}{10}$)=$\frac{1}{2}$+sin$\frac{3π}{10}$,g($\frac{8}{5}$)=$\frac{1}{2}$+cos$\frac{8π}{5}$=$\frac{1}{2}$-cos$\frac{3π}{5}$=$\frac{1}{2}$-cos($\frac{π}{2}$+$\frac{π}{10}$)=$\frac{1}{2}$+sin$\frac{π}{10}$,
而sin$\frac{3π}{10}$>sin$\frac{π}{10}$>0,∴g($\frac{1}{5}$)>g($\frac{8π}{5}$)>0,
故選:A.

點評 本題主要考查三角函數(shù)的恒等變換、函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律、誘導(dǎo)公式、正弦函數(shù)的單調(diào)性的應(yīng)用,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.調(diào)查者通過詢問64名男女大學生在購買食品時是否看營養(yǎng)說明,得到的數(shù)據(jù)如表所示:
看營養(yǎng)說明不看營養(yǎng)說明合計
男大學生26632
女大學生141832
合計402464
問大學生的性別與是否看營養(yǎng)說明之間有沒有關(guān)系?
附:參考公式與數(shù)據(jù):χ2=$\frac{{n{{(n}_{11}n}_{22}{{-n}_{12}n}_{21})}^{2}}{{n}_{1}{+n}_{2}{{+n}_{+1}n}_{+2}}$.當χ2>3.841時,有95%的把握說事件A與B有關(guān);當χ2>6.635時,有99%的把握說事件A與B有關(guān);當χ2≤3.841時,有95%的把握說事件A與B是無關(guān)的.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.在極坐標系中,圓ρ=-2cosθ的圓心C到直線2ρcosθ+ρsinθ-2=0的距離等于$\frac{4\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.某四棱錐的三視圖如圖所示,則該四棱錐的側(cè)面積為(  )
A.8B.8+4$\sqrt{10}$C.4$\sqrt{10}$+2$\sqrt{13}$D.2$\sqrt{10}$+$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知f(x)=$\frac{lnx}{x+1}$+$\frac{1}{x}$,g(x)=(x+1)•(f(x)-$\frac{1}{x}$).
(1)求曲線f(x)在(1,f(1))處的切線方程;
(2)若方程g(x)=ax有兩個不同的根x1,x2,證明:x1•x2>e2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.多項式1+x+(1+x)2+(1+x)3+…+(1+x)5的展開式中,x項的系數(shù)為15.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.“楊輝三角”又稱“賈憲三角”,是因為賈憲約在公元1050年首先使用“賈憲三角”進行高次開方運算,而楊輝在公元1261年所著的《詳解九章算法》一書中,輯錄了賈憲三角形數(shù)表,并稱之為“開方作法本源”圖.下列數(shù)表的構(gòu)造思路就源于“楊輝三角”.該表由若干行數(shù)字組成,從第二行起,每一行中的數(shù)字均等于其“肩上”兩數(shù)之和,表中最后一行僅有一個數(shù),則這個數(shù)是( 。
A.2017×22016B.2018×22015C.2017×22015D.2018×22016

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知a、b∈{2,3,4,5,6,7,8,9},則logab的不同取值個數(shù)為( 。
A.53B.56C.55D.57

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知函數(shù)f(x)=|ln||x-1||,f(x)-m的四個零點x1,x2,x3,x4,且k=$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$+$\frac{1}{{x}_{3}}$+$\frac{1}{{x}_{4}}$,則f(k)-ek的值是-e2

查看答案和解析>>

同步練習冊答案