19.某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.10B.15C.18D.20

分析 根據(jù)已知中的三視圖,可得該幾何體是一個(gè)以俯視圖為底面的四棱錐,代入錐體體積公式,可得答案.

解答 解:根據(jù)已知中的三視圖,可得該幾何體是一個(gè)以俯視圖為底面的四棱錐,
其底面面積S=$\frac{1}{2}$(3+6)×2-$\frac{1}{2}$×3×1=$\frac{15}{2}$,
高h(yuǎn)=6,
故體積V=$\frac{1}{3}Sh$=15,
故選:B.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是棱錐的體積和表面積,簡(jiǎn)單幾何體的三視圖,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知a,b,c為實(shí)數(shù),2a+4b=2c,4a+2b+1=4c,則c的最小值為$lo{g}_{2}\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.沿一個(gè)正方體三個(gè)面的對(duì)角線(xiàn)截得的幾何體如圖所示,若正視圖的視線(xiàn)方向與前面的三角形面垂直,則該幾何體的左視圖為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在平面直角坐標(biāo)系xOy中,曲線(xiàn)C1:$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t為參數(shù)),在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)C2:ρ=2sinθ,曲線(xiàn)C3:ρ=2$\sqrt{3}$cosθ.
(Ⅰ)求曲線(xiàn)C1的極坐標(biāo)方程;
(Ⅱ)若曲線(xiàn)C1分別與曲線(xiàn)C2、C3相交于點(diǎn)A、B(A、B均異于原點(diǎn)O),求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.如圖是兩個(gè)腰長(zhǎng)均為10cm的等腰直角三角形拼成的一個(gè)四邊形ABCD,現(xiàn)將四邊形ABCD沿BD折成直二面角A-BD-C,則三棱錐A-BCD的外接球的體積為500$\sqrt{3}$cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.執(zhí)行如圖所示的程序框圖,如果輸入的a=918,b=238,則輸出的n=( 。
A.2B.3C.4D.34

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1}{3}$x3-alnx-$\frac{1}{3}$(a∈R,a≠0)
(1)當(dāng)a=3時(shí),求曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程;
(2)若對(duì)任意的x∈[1,+∞),都有f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)a,b,c分別是△ABC三個(gè)內(nèi)角∠A,∠B,∠C的對(duì)邊,若向量$\overrightarrow m=({1-cos(A+B),cos\frac{A-B}{2}})$,$\overrightarrow n=({\frac{5}{8},cos\frac{A-B}{2}})$,且$\overrightarrow m•\overrightarrow n=\frac{9}{8}$.
(1)求tanA•tanB的值;
(2)求$\frac{{2{S_{△ABC}}}}{{{a^2}+{b^2}-{c^2}}}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)Tn為數(shù)列{an}的前n項(xiàng)之積,即Tn=a1a2a3…an-1an,若${a_1}=2,\frac{1}{{{a_n}-1}}-\frac{1}{{{a_{n-1}}-1}}=1$,當(dāng)Tn=11時(shí),n的值為10.

查看答案和解析>>

同步練習(xí)冊(cè)答案