【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),試求的單調(diào)增區(qū)間;
(2)試求在上的最大值;
(3)當(dāng)時(shí),求證:對(duì)于恒成立.
【答案】(1) ;(2)詳見解析; (3)詳見解析.
【解析】試題分析:(1)當(dāng)時(shí), , ,當(dāng),得,所以的單調(diào)增區(qū)間為;(2), ,得,討論, , ,利用函數(shù)在區(qū)間上的單調(diào)性可以求出函數(shù)在上的最大值;(3)當(dāng)時(shí),設(shè)函數(shù),則問(wèn)題轉(zhuǎn)化為證明對(duì)于, ,利用導(dǎo)數(shù)研究函數(shù)在區(qū)間的單調(diào)性,從而證明成立,于是問(wèn)題得證.
試題解析:(1)由,得.當(dāng)時(shí), ,令,得.所以的單調(diào)增區(qū)間為.
(2)令,得,所以當(dāng)時(shí), 時(shí), 恒成立, 單調(diào)遞增;當(dāng)時(shí), 時(shí), 恒成立, 單調(diào)遞減;當(dāng)時(shí), 時(shí), , 單調(diào)遞減; 時(shí), , 單調(diào)遞增,綜上,無(wú)論為何值,當(dāng)時(shí), 最大值都為或. ,
,所以當(dāng)
時(shí), ,
當(dāng)時(shí), .
(3)令,所以,所以,令,
解得,所以當(dāng)時(shí), 單調(diào)遞減;當(dāng)時(shí), 單調(diào)遞增,所以當(dāng)時(shí), ,所以函數(shù)在上單調(diào)遞增,所以,所以恒成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解高三學(xué)生的數(shù)學(xué)成績(jī),抽取了某班60名學(xué)生,將所得數(shù)據(jù)整理后,畫出如圖所示的頻率分布直方圖,已知從左到右各長(zhǎng)方形高的比為2:3:5:6:3:1,則該班學(xué)生數(shù)學(xué)成績(jī)?cè)赱100,120]之間的學(xué)生人數(shù)是( )
A.32
B.24
C.18
D.12
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)圓的圓心為,直線過(guò)點(diǎn)且不與軸、軸垂直,且與圓于, 兩點(diǎn),過(guò)作的平行線交直線于點(diǎn).
(1)證明為定值,并寫出點(diǎn)的軌跡方程;
(2)設(shè)點(diǎn)的軌跡為曲線,直線交于兩點(diǎn),過(guò)且與垂直的直線與圓交于兩點(diǎn),求與的面積之和的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)
某工廠生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲、乙兩種產(chǎn)品所需煤、電力、勞動(dòng)力、獲得利潤(rùn)及每天資源限額(最大供應(yīng)量)如表所示:
產(chǎn)品 | 甲產(chǎn)品 | 乙產(chǎn)品 | 資源限額 |
煤(t) | 9 | 4 | 360 |
電力(kw·h) | 4 | 5 | 200 |
勞力(個(gè)) | 3 | 10 | 300 |
利潤(rùn)(萬(wàn)元) | 7 | 12 |
問(wèn):每天生產(chǎn)甲、乙兩種產(chǎn)品各多少噸,獲得利潤(rùn)總額最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位附近只有甲、乙兩個(gè)臨時(shí)停車場(chǎng),它們各有個(gè)車位,為了方便市民停車,某互聯(lián)網(wǎng)停車公司對(duì)這兩個(gè)停車場(chǎng),在某些固定時(shí)刻的剩余停車位進(jìn)行記錄,如下表:
時(shí)間 停車場(chǎng) | 點(diǎn) | 點(diǎn) | 點(diǎn) | 點(diǎn) | 點(diǎn) | 點(diǎn) |
甲停車場(chǎng) | ||||||
乙停車場(chǎng) |
如果表中某一時(shí)刻剩余停車位數(shù)低于該停車場(chǎng)總車位數(shù)的,那么當(dāng)車主驅(qū)車抵達(dá)單位附近時(shí),該公司將會(huì)向車主發(fā)出停車場(chǎng)飽和警報(bào).
(1)假設(shè)某車主在以上六個(gè)時(shí)刻抵達(dá)單位附近的可能性相同,求他收到甲停車場(chǎng)飽和警報(bào)的概率;
(2)從這六個(gè)時(shí)刻中任選一個(gè)時(shí)刻,求甲停車場(chǎng)比乙停車場(chǎng)剩余車位數(shù)少的概率;
(3)當(dāng)乙停車場(chǎng)發(fā)出飽和警報(bào)時(shí),求甲停車場(chǎng)也發(fā)出飽和警報(bào)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè):實(shí)數(shù)滿足,其中; :實(shí)數(shù)滿足.
(1)若,且為真,求實(shí)數(shù)的取值范圍;
(2)若是的必要不充分條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}中,a1=2,an+1﹣an﹣2n﹣2=0(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè) ,若對(duì)任意的正整數(shù)n,當(dāng)m∈[﹣1,1]時(shí),不等式 恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖空間四邊形ABCD,E、F、G、H分別為AB、AD、CB、CD的中點(diǎn)且AC=BD,AC⊥BD,試判斷四邊形EFGH的形狀,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=3sin(ωx+φ)(ω>0,﹣<φ<)的圖象關(guān)于直線x=對(duì)稱,它的周期是π,則以下結(jié)論正確的個(gè)數(shù)( 。
(1)f(x)的圖象過(guò)點(diǎn)(0,)
(2)f(x)的一個(gè)對(duì)稱中心是(,0)
(3)f(x)在[,]上是減函數(shù)
(4)將f(x)的圖象向右平移|φ|個(gè)單位得到函數(shù)y=3sinωx的圖象.
A.4
B.3
C.2
D.1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com