1.已知角α的正弦線和余弦線長度相等,且α的終邊在第三象限,則tanα等于( 。
A.0B.1C.-1D.$\sqrt{3}$

分析 由已知可得故sinα=cosα=$-\frac{\sqrt{2}}{2}$,根據(jù)同角三角函數(shù)的基本關(guān)系可得tanα的值.

解答 解:已知角α的正弦線和余弦線長度相等,且α的終邊在第三象限,
故sinα=cosα=$-\frac{\sqrt{2}}{2}$,
故tanα=1,
故選:B

點評 本題考查的知識點是三角函數(shù)線,同角三角函數(shù)的基本關(guān)系,難度中檔.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

15.已知點P是橢圓16x2+25y2=1600上一點,且在x軸上方,F(xiàn)1,F(xiàn)2是橢圓的左,右焦點,直線PF2的斜率為$-4\sqrt{3}$.
(1)求P點的坐標;
(2)求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知在平面直角坐標系xOy中的一個橢圓,它的中心在原點,左焦點為F(-$\sqrt{3}$,0),右頂點為D(2,0),設(shè)點A(1,0.5).
(1)求該橢圓的標準方程;
(2)若P是橢圓上的動點,求線段PA中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知盒子中有4個紅球,n個白球,若從中一次取出4個球,其中白球的個數(shù)為X,且E(X)=$\frac{12}{7}$.則n的值( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.2015年春晚上,有一種旋轉(zhuǎn)舞臺燈,其外形呈正四棱柱,每個側(cè)面上安裝了5只不同的彩燈,每只彩燈發(fā)光的概率為$\frac{1}{2}$,若每個側(cè)面上至少3只彩燈正常發(fā)光,則該側(cè)面不需要維修,否則需要維修.
(Ⅰ)求恰有兩個側(cè)面需要維修的概率;
(Ⅱ)設(shè)四個側(cè)面的維修費分別為100元、100元、200元、200元,記需要維修的費用為X,求X的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知向量$\overrightarrow{a}$=($\sqrt{3}$cosx,cosx),$\overrightarrow$=(0,sinx),$\overrightarrow{c}$=(sinx,cosx),$\overrightarrowcmao4sk$=(sinx,sinx).
(1)當x=$\frac{π}{4}$時,求向量$\overrightarrow{a}$與$\overrightarrow$的夾角θ;
(2)求$\overrightarrow{c}•\overrightarrowweqiyia$取得最大值時x的值;
(3)設(shè)函數(shù)f(x)=($\overrightarrow{a}-\overrightarrow$)$•(\overrightarrow{c}+\overrightarrow40y4cme)$,將函數(shù)f(x)的圖象向右平移s個單位長度,向上平移t個長度單位(s,t>0)后得到函數(shù)g(x)的圖象,且g(x)=2sin2x+1;令$\overrightarrow{m}$=(s,t),求|$\overrightarrow{m}$|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若函數(shù)f(x)=ax3-x2+4x+3恰有三個零點,則實數(shù)a的取值范圍是(-2,0)∪(0,$\frac{14}{243}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.在平面直角坐標系中,以原點O為極點,x軸的正半軸為極軸建立極坐標系,已知直線l的極坐標方程為:ρsinθ+ρcosθ=2,曲線C的極坐標方程為:ρcos2θ=asinθ(a>0),曲線C與直線l的交點為M,N.
(Ⅰ)當a=1時,求直線l和曲線C相交的弦長|MN|;
(Ⅱ)若$\overrightarrow{OM}$•$\overrightarrow{ON}$=0,求△OMN的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.某廠家擬在暑期舉行大型的促銷活動,經(jīng)測算某產(chǎn)品當促銷費用為x萬元時,銷售量t萬件滿足t=5-$\frac{2}{x}$(其中0≤x≤a,a為正常數(shù))現(xiàn)擬定生產(chǎn)量與銷售量相等,已知生產(chǎn)該產(chǎn)品t萬件還需投入成本(10+2t)萬元(不含促銷費用),產(chǎn)品的銷售價格定為(4+$\frac{20}{t}$)萬元/萬件.
(1)將該產(chǎn)品的利潤y萬元表示為促銷費用x萬元的函數(shù)
(2)促銷費用投入多少萬元時,廠家的利潤最大.

查看答案和解析>>

同步練習冊答案