10.設(shè)函數(shù)f(x)=$\sqrt{\frac{1+sinx}{1-sinx}}$-$\sqrt{\frac{1-sinx}{1+sinx}}$,且f(α)=1,α為第二象限角.
(1)求tanα的值.
(2)求sinαcosα+5cos2α的值.

分析 (1)利用同角三角函數(shù)的基本關(guān)系,以及三角函數(shù)在各個(gè)象限中的符號,求得要求式子的值.
(2)利用同角三角函數(shù)的基本關(guān)系,求得要求式子的值.

解答 解:(1)∵函數(shù)f(x)=$\sqrt{\frac{1+sinx}{1-sinx}}$-$\sqrt{\frac{1-sinx}{1+sinx}}$,且f(α)=1,α為第二象限角.
∴$\sqrt{\frac{1+sinα}{1-sinα}}$-$\sqrt{\frac{1-sinα}{1+sinα}}$=|$\frac{1+sinα}{cosα}$|-|$\frac{1-sinα}{cosα}$|=-$\frac{1+sinα}{cosα}$-$\frac{sinα-1}{cosα}$=-2tanα=1,
∴tanα=-$\frac{1}{2}$.
(2)sinαcosα+5cos2α=$\frac{sinαcosα+{5cos}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=$\frac{tanα+5}{{tan}^{2}α+1}$=$\frac{-\frac{1}{2}+5}{\frac{1}{4}+1}$=$\frac{18}{5}$.

點(diǎn)評 本題主要考查同角三角函數(shù)的基本關(guān)系,以及三角函數(shù)在各個(gè)象限中的符號,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=ex,g(x)=mx2+ax+b,其中m,a,b∈R,e=2.71828…為自然對數(shù)的底數(shù).
(I)函數(shù)h(x)=xf (x),當(dāng)a=l,b=0時(shí),若函數(shù)h(x)與g(x)具有相同的單調(diào)區(qū)間,求m的值;
(II)記F(x)=f(x)-g(x).當(dāng)a=2,m=0時(shí),若函數(shù)F(x)在[-1,2]上存在兩個(gè)不同的零點(diǎn),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北省高二理上第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知直線,半徑為的圓相切,圓心軸上且在直線的右上方.

(1)求圓的方程;

(2)若直線過點(diǎn)且與圓交于兩點(diǎn)(軸上方,B在軸下方),問在軸正半軸上是否存在定點(diǎn),使得軸平分?若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知方程$\frac{x^2}{2-k}+\frac{y^2}{3+k}=1$表示橢圓,求實(shí)數(shù)k的取值范圍-3<m<2且x≠-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某公司13個(gè)部門接收的快遞的數(shù)量如莖葉圖所示,則這13個(gè)部門接收的快遞的數(shù)量的中位數(shù)為(  )
A.6B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.一年按365天計(jì)算,2名同學(xué)在同一天過生日的概率為$\frac{1}{365}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合M,N⊆I,若M∩N=N,則(  )
A.IM?∁INB.M⊆∁INC.IM⊆∁IND.M?∁IN

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.某中學(xué)進(jìn)行高一學(xué)生體檢,根據(jù)檢查的學(xué)生每分鐘脈搏數(shù)繪制了頻率分布直方圖(如圖所示),根據(jù)頻率分布直方圖估計(jì)每分鐘搏數(shù)在[69,85]的概率約為0.6.
組號分組頻數(shù)
1[53,61)5
2[61,69)14
 3[69,77)25
4[77,85)11
5[85,93)5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=cosx+|cosx|,x∈R是( 。
A.最小正周期是πB.區(qū)間[0,2]上的增函數(shù)
C.圖象關(guān)于點(diǎn)(kπ,0)(k∈Z)對稱D.周期函數(shù)且圖象有無數(shù)條對稱軸

查看答案和解析>>

同步練習(xí)冊答案