已知雙曲線
的離心率為
,右準線方程為
。
(Ⅰ)求雙曲線
C的方程;
(Ⅱ)已知直線
與雙曲線
C交于不同的兩點
A,
B,且線段
AB的中點在圓
上,求實數(shù)
m的值。
(1)
;(2)
。
試題分析:(1)因為雙曲線
的離心率為
,右準線方程為
,所以
,所以
,
所以雙曲線
C的方程為
6分
(2)由
,得
,設
,
則
,所以
,所以
,因為線段
AB的中點在圓
上,所以代入得
6分
點評:圓錐曲線與直線的綜合應用,是考試中?嫉膬热。在解題時要注意雙曲線性質的靈活應用,還有注意別出現(xiàn)計算錯誤。屬于中檔題型。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓C:
的離心率為
,且經(jīng)過點
.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設斜率為1的直線l與橢圓C相交于
,
兩點,連接MA,MB并延長交直線x=4于P,Q兩點,設y
P,y
Q分別為點P,Q的縱坐標,且
.求△ABM的面積.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知橢圓
的中心在原點,其上、下頂點分別為
,點
在直線
上,點
到橢圓的左焦點的距離為
.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設
是橢圓上異于
的任意一點,點
在
軸上的射影為
,
為
的中點,直線
交直線
于點
,
為
的中點,試探究:
在橢圓上運動時,直線
與圓
:
的位置關系,并證明你的結論.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知圓C的圓心是直線
與x軸的交點,且圓C與直線x+y+3=0相切,則圓C的方程為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
我們把焦點相同,且離心率互為倒數(shù)的橢圓和雙曲線稱為一對“相關曲線”.已知
、
是一對相關曲線的焦點,
是它們在第一象限的交點,當
時,這一對相關曲線中雙曲線的離心率是( )
.
.
.
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
C:
的短軸長等于焦距,橢圓
C上的點到右焦點
的最短距離為
.
(1)求橢圓
C的方程;
(2)過點
且斜率為
(
>0)的直線
與
C交于
兩點,
是點
關于
軸的對稱點,證明:
三點共線.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
中心在原點,焦點在
軸上的雙曲線
的離心率為
,直線與雙曲線
交于
兩點,線段
中點
在第一象限,并且在拋物線
上,且
到拋物線焦點的距離為
,則直線的斜率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知拋物線
的焦點為
,過焦點
且不平行于
軸的動直線
交拋物線于
,
兩點,拋物線在
、
兩點處的切線交于點
.
(Ⅰ)求證:
,
,
三點的橫坐標成等差數(shù)列;
(Ⅱ)設直線
交該拋物線于
,
兩點,求四邊形
面積的最小值.
查看答案和解析>>