中心在原點,焦點在軸上的雙曲線的離心率為,直線與雙曲線交于兩點,線段中點在第一象限,并且在拋物線上,且到拋物線焦點的距離為,則直線的斜率為(   )
A.B.C.D.
D

試題分析:∵到拋物線焦點的距離為,∴,∴M,設(shè)點,代入雙曲線方程相減得,又雙曲線的離心率為,∴,∴,∴,故選D
點評:熟練掌握雙曲線中的“中點弦”問題是解決此類問題的關(guān)鍵,屬基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)是橢圓上的兩點,已知向量,若且橢圓的離心率,短軸長為2,O為坐標(biāo)原點.
(1)求橢圓的方程;
(2)試問△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若點O和點F分別為雙曲線 的中心和左焦點,點P為雙曲線右支上的任意一點,則的最小值為(  )
A.-6B.-2C.0D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線的離心率為,右準(zhǔn)線方程為
(Ⅰ)求雙曲線C的方程;
(Ⅱ)已知直線與雙曲線C交于不同的兩點A,B,且線段AB的中點在圓上,求實數(shù)m的值。  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線的極坐標(biāo)方程是,以極點為原點,極軸為軸正方向建立平面直角坐標(biāo)系,直線的參數(shù)方程是:(為參數(shù)).
(Ⅰ)求曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線交于,兩點,點的直角坐標(biāo)為,若,求直線的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,是平面的斜線段,為斜足。若點在平面內(nèi)運動,使得的面積為定值,則動點的軌跡是(   )
A.圓B.橢圓
C.一條直線D.兩條平行直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知是拋物線的焦點,上的兩個點,線段AB的中點為,則的面積等于              

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若橢圓的左、右焦點分別為F1,F(xiàn)2,橢圓的離心率為:2.(1)過點C(-1,0)且以向量為方向向量的直線交橢圓于不同兩點A、B,若,則當(dāng)△OAB的面積最大時,求橢圓的方程。
(2)設(shè)M,N為橢圓上的兩個動點,,過原點O作直線MN的垂線OD,垂足為D,求點D的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


已知拋物線和橢圓都經(jīng)過點,它們在軸上有共同焦點,橢圓的對稱軸是坐標(biāo)軸,拋物線的頂點為坐標(biāo)原點.
(1)求這兩條曲線的方程;
(2)對于拋物線上任意一點,點都滿足,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案