11.△ABC的內(nèi)角A、B、C所對的邊分別是a、b、c,若$sin2C=\frac{9}{8}sinC$,a=4,c=5,則b=( 。
A.3B.4C.5D.6

分析 由已知利用二倍角的正弦函數(shù)公式,結合sinC≠0,可求cosC=$\frac{9}{16}$,利用余弦定理2b2-9b-18=0,即可解得b的值.

解答 解:∵$sin2C=\frac{9}{8}sinC$,可得:2sinCcosC=$\frac{9}{8}$sinC,
又∵sinC≠0,
∴可得:cosC=$\frac{9}{16}$,
∴由已知及余弦定理c2=a2+b2-2abcosC,可得:52=42+b2-2×4×b×$\frac{9}{16}$,
∴整理可得:2b2-9b-18=0,解得:b=6或-$\frac{3}{2}$(舍去),
故選:D.

點評 本題主要考查了二倍角的正弦函數(shù)公式,余弦定理在解三角形中的應用,考查了計算能力和轉化思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,在四棱錐P-ABCD中,側面PAB⊥底面ABCD,△PAB為正三角形,AB⊥AD,CD⊥AD,點E為線段BC的中點,F(xiàn),G分別為線段PA,AE上一點,且AB=AD=2,PF=2FA.
(1)確定點G的位置,使得FG∥平面PCD;
(2)點Q為線段AB上一點,且BQ=2QA,若平面PCQ將四棱錐P-ABCD分成體積相等的兩部分,求三棱錐C-DEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設集合M={x|x≥2},N={x|x2-25<0},則M∩N=( 。
A.(1,5)B.[2,5)C.(-5,2]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.觀察研究某種植物的生長速度與溫度的關系,經(jīng)過統(tǒng)計,得到生長速度(單位:毫米/月)與月平均氣溫的對比表如下:
溫度t(℃)-5068121520
生長速度y24567810
(1)求生長速度y關于溫度t的線性回歸方程;(斜率和截距均保留為三位有效數(shù)字);
(2)利用(1)中的線性回歸方程,分析氣溫從-50C至200C時生長速度的變化情況,如果某月的平均氣溫是20C時,預測這月大約能生長多少.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:$\hat b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline{xy}}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,BC∥AD,∠ABC=90°,且PA=AB=BC=$\frac{1}{2}$AD=1,點E在棱PD上(點E異于端點),且$\overrightarrow{PE}=λ\overrightarrow{PD}$.
(1)當$λ=\frac{2}{3}$時,求異面直線PC與AE所成角的余弦值;
(2)若二面角P-AC-E的余弦值為$\frac{\sqrt{3}}{3}$,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,多面體EF-ABCD中,ABCD是正方形,AC、BD相交于O,EF∥AC,點E在AC上的射影恰好是線段AO的中點.
(Ⅰ)求證:BD⊥平面ACF;
(Ⅱ)若直線AE與平面ABCD所成的角為60°,求平面DEF與平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已成橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右頂點分別為A1、A2,上下頂點分別為B2/B1,左右焦點分別為F1、F2,其中長軸長為4,且圓O:x2+y2=$\frac{12}{7}$為菱形A1B1A2B2的內(nèi)切圓.
(1)求橢圓C的方程;
(2)點N(n,0)為x軸正半軸上一點,過點N作橢圓C的切線l,記右焦點F2在l上的射影為H,若△F1HN的面積不小于$\frac{3}{16}$n2,求n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}x,x>0}\\{{3}^{x},x≤0}\end{array}\right.$,則f(f(2))的值為( 。
A.-$\frac{1}{3}$B.-3C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,AB=2AD=2,$∠DAB=\frac{π}{3}$,PD⊥AD,PD⊥DC.
(Ⅰ)證明:平面PBC⊥平面PBD;
(Ⅱ)若二面角P-BC-D為$\frac{π}{6}$,求AP與平面PBC所成角的正弦值.

查看答案和解析>>

同步練習冊答案