14.計(jì)算下列式子的值:
(1)$lg8+lg125-{(\frac{1}{7})^{-2}}+{16^{\frac{3}{4}}}+{(\sqrt{3}-1)^0}$;
(2)$sin\frac{25π}{6}+cos\frac{25π}{3}+tan(-\frac{25π}{4})$.

分析 (1)根據(jù)對(duì)數(shù)的運(yùn)算法則和指數(shù)冪的運(yùn)算法則計(jì)算即可.
(2)利用誘導(dǎo)公式化簡(jiǎn)后計(jì)算即可.

解答 解:(1)$lg8+lg125-{(\frac{1}{7})^{-2}}+{16^{\frac{3}{4}}}+{(\sqrt{3}-1)^0}$;
原式=lg(8×125)-72+$[(2)^{4}]^{\frac{3}{4}}$+1
=lg1000-49+8+1
=3-49+8+1
=-37
(2)$sin\frac{25π}{6}+cos\frac{25π}{3}+tan(-\frac{25π}{4})$.
原式=sin(4π+$\frac{π}{6}$+cos($8π+\frac{π}{3}$)-tan($6π+\frac{π}{4}$)
=$sin\frac{π}{6}+cos\frac{π}{3}-tan({\frac{π}{4}})$
=$\frac{1}{2}$+$\frac{1}{2}$-1
=0

點(diǎn)評(píng) 本題考了對(duì)數(shù)的運(yùn)算法則和指數(shù)冪的運(yùn)算法則以及誘導(dǎo)公式化簡(jiǎn)能力.屬于基礎(chǔ)知識(shí)考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=ex(x-b)(b∈R).若存在x∈[$\frac{1}{2}$,2],使得f(x)+xf′(x)>0,則實(shí)數(shù)b的取值范圍是( 。
A.(-∞,$\frac{8}{3}$)B.(-∞,$\frac{5}{6}$)C.(-$\frac{3}{2}$,$\frac{5}{6}$)D.($\frac{8}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=x2+ax+3
(1)當(dāng)x∈R時(shí),f(x)≥2恒成立,求a的取值范圍;
(2)當(dāng)x∈R時(shí),g(x)=f(2x).
①求g(x)的值域;
②若g(x)≤a有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為   ρsin2θ=2cosθ,過(guò)點(diǎn)P(-2,-4)的直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-2-\frac{\sqrt{2}}{2}t}\\{y=-4-\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),直線l與曲線C相交于A,B兩點(diǎn).
(Ⅰ)寫(xiě)出曲線C的直角坐標(biāo)方程和直線l的普通方程;
(Ⅱ)求證:|PA|•|PB|=|AB|2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=x3+ax2+3x-9.
(1)若函數(shù)f(x)在x=-3時(shí)取得極值,求函數(shù)f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)若函數(shù)f(x)在區(qū)間[1,2]上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.同時(shí)投擲兩個(gè)骰子,記向上的點(diǎn)數(shù)分別為a,b,設(shè)函數(shù)f(x)=(a-b)x2+bx+1.
(1)求f(x)為偶函數(shù)的概率;
(2)求f(x)在$[{-\frac{1}{2},+∞})$上單調(diào)遞增的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知向量$\vec a=({1,2-x})$,$\vec b=({1+x,2})$.
(1)若$\vec a∥\vec b$,求x的值;
(2)當(dāng)x∈[0,2]時(shí),求$\vec a•({\vec a-\vec b})$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在正四面體ABCD中,E為棱BC的中點(diǎn),過(guò)E作其外接球的截面,記S為最大的截面面積,T為最小的截面面積,則$\frac{S}{T}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知x>0,觀察下列式子:$x+\frac{1}{x}≥2,x+\frac{4}{x^2}≥3,x+\frac{27}{x^3}≥4,x+\frac{256}{x^4}≥5,…$類(lèi)比有$x+\frac{a}{{{x^{2016}}}}≥2017$,a=20162016

查看答案和解析>>

同步練習(xí)冊(cè)答案