已知數(shù)列{an}中,an=
2
n(n+1)
,n∈N*,則該數(shù)列的前n項和Sn=
 
考點:數(shù)列的求和
專題:點列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:利用裂項法即可得到結(jié)論.
解答: 解:∵an=
2
n(n+1)
=2(
1
n
-
1
n+1
),
∴該數(shù)列的前n項和Sn=2(1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
)=2(1-
1
n+1
)=
2n
n+1
,
故答案為:
2n
n+1
點評:本題主要考查數(shù)列求和,利用裂項法是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

先用求根公式求出方程2x2-3x-1=0的解,然后再借助計算器或計算機(jī),用二分法求出這個方程的近似解(精確度0.1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ex
x
(e為自然對數(shù)的底)
(1)試確定函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在[
1
2
,
3
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A=
12
cd
(c,d為實數(shù)).若矩陣A屬于特征值2,3的一個特征向量分別為
2
1
,
1
1
,求矩陣A的逆矩陣A-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,點D在BC邊上,AD=33,sin∠BAD=
5
13
,cos∠ADC=
3
5

(Ⅰ)求sin∠ABD的值;   
(Ⅱ)求△ABD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

連續(xù)投骰子兩次得到的點數(shù)分別為m,n,作向量
a
=(m,n),則
a
b
=(1,-1)的夾角成為直角三角形內(nèi)角的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|2x+1|-|x-4|.
(Ⅰ)解不等式f(x)>0;
(Ⅱ)若f(x)+3|x-4|>m對一切實數(shù)x均成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
=(-1,2),
b
=(1,-1),
c
=(3,-2),用
a
,
b
作基底可將
c
表示
c
=p
a
+q
b
,則實數(shù)p、q的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中a=sin10°,b=sin50°,C=70°,那么△ABC的面積為
 

查看答案和解析>>

同步練習(xí)冊答案