已知函數(shù)f(x)=x2+1,g(x)=2x+1,則g(f(2))=( 。
A、8B、9C、10D、11
考點:函數(shù)的值
專題:函數(shù)的性質及應用
分析:利用函數(shù)的性質求解.
解答: 解:∵函數(shù)f(x)=x2+1,g(x)=2x+1,
∴f(2)=4+1=5,
∴g(f(2))=g(5)=2×5+1=11.
故選:D.
點評:本題考查函數(shù)值的求法,解題時要認真審題,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知a2+b2=c2,ac=b2,且a>0,b>0,c>0,則
c
a
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若不等式|x+3|+|x-7|≥a2-3a的解集為R,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x3-
1
x
+1,若f(a)=3,則f(-a)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式|x-1|-|x-3|<1的解集為( 。
A、(0,1)
B、(-∞,2.5)
C、(1,3)
D、(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
e-x-3(x≤0)
ax-2(x>0)
(a為常數(shù)且a>0),對于下列結論:
①函數(shù)f(x)的最小值為-2;
②函數(shù)f(x)在R上是單調函數(shù);
③若f(x)>0在[1,+∞)上恒成立,則a的取值范圍為(2,+∞);
④當x≠0時,xf′(x)>0(這里f′(x)是f(x)的導函數(shù)).
其中正確的是( 。
A、①③④B、①②③
C、①④D、③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,若a1=
1
2
,an=
1
1-an-1
(n≥2,n∈N*),則a2014等于( 。
A、
1
2
B、1
C、2
D、-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

3-4i
1+2i
=( 。
A、-1-2iB、2+i
C、-1+2iD、-2+i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(1)=0,則不等式
f(x)-f(-x)
x
>0的解集為( 。
A、(-1,0)∪(1,+∞)
B、(-∞,-1)∪(0,1)
C、(-∞,-1)∪(1,+∞)
D、(-1,0)∪(0,1)

查看答案和解析>>

同步練習冊答案