3.已知$f(x)=cos({ωx+\frac{π}{3}})$,且ω是函數(shù)y=ex-e2x的極值點(diǎn),則f(x)的一條對稱軸是( 。
A.$x=-\frac{π}{3}$B.$x=\frac{π}{3}$C.$x=\frac{π}{6}$D.$x=\frac{2π}{3}$

分析 求出函數(shù)的極值點(diǎn),得到ω,然后求解三角函數(shù)的對稱軸即可.

解答 解:函數(shù)y=ex-e2x,可得y′=ex-e2,令y′=0可得x=2,
當(dāng)x<2時(shí),y′<0,x>2時(shí),y′>0,所以2是函數(shù)的極值點(diǎn),
可得ω=2.
可得f(x)=cos(2x+$\frac{π}{3}$),當(dāng)x=$\frac{π}{3}$時(shí),f($\frac{π}{3}$)取得函數(shù)的最小值,
所以x=$\frac{π}{3}$是函數(shù)的對稱軸之一.
故選:B.

點(diǎn)評 本題考查函數(shù)的極值點(diǎn)的求法,三角函數(shù)的對稱軸的求法,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知A(-2,0),B(2,0),點(diǎn)C,D依次滿足$|{\overrightarrow{AC}}$|=2,$\overrightarrow{AD}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$.求點(diǎn)D的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若拋物線x2=ay的焦點(diǎn)為F(0,2),則a的值為(  )
A.$\frac{1}{4}$B.4C.$\frac{1}{8}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合M={x|(x+3)(x-1)≤0},N={x|log2x≤1},則M∪N=( 。
A.[-3,2]B.[-3,2)C.[1,2]D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知圓C1:x2+y2=4和圓C2:(x-2)2+(y-2)2=4,若點(diǎn)P(a,b)(a>0,b>0)在兩圓的公共弦上,則$\frac{1}{a}+\frac{9}$的最小值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若lg2=a,lg7=b,則 log285=$\frac{1-a}{2a+b}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.衡州中學(xué)有教師150人,其中高級教師15人,中級教師90人,現(xiàn)按職稱分層抽樣選出30名教師參加教職工代表大會,則選出的高、中、初級教師的人數(shù)分別為( 。
A.5,10,15B.3,18,9C.3,10,17D.5,9,16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知點(diǎn)A,B的坐標(biāo)分別為(2,0)、(-2,0),直線AT、BT交與點(diǎn)T,且它們的斜率之積為常數(shù)-λ(λ>0,λ≠1),點(diǎn)T的軌跡以及A,B兩點(diǎn)構(gòu)成曲線C
(Ⅰ)求曲線C的方程,并求其焦點(diǎn)坐標(biāo);
(Ⅱ)若0<λ<1,且曲線C上的點(diǎn)到其焦點(diǎn)的最近距離為1,設(shè)直線l:y=(x-1)交曲線C于E,F(xiàn)兩點(diǎn),交x軸于點(diǎn)Q,直線AE、AF分別交直線x=3于點(diǎn)N、M.記線段MN的中點(diǎn)為P,直線PQ的斜率為k′.求證:k•k′為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若復(fù)數(shù)z滿足(3+4i)z=5,則z的虛部為( 。
A.-4B.$-\frac{4}{5}$C.$\frac{4}{5}$D.4

查看答案和解析>>

同步練習(xí)冊答案