【題目】如圖,在四棱錐中,底面是矩形,面底面,且是邊長(zhǎng)為的等邊三角形, , 在上,且∥面BDM.
(1)求直線PC與平面BDM所成角的正弦值;
(2)求平面BDM與平面PAD所成銳二面角的大小.
【答案】(1);(2).
【解析】試題分析:
利用題意建立空間直角坐標(biāo)系,據(jù)此可得:
(1) 直線PC與平面BDM所成角的正弦值為
(2) 平面BDM與平面PAD所成銳二面角的大小為.
試題解析:
解:因?yàn)?/span>, 作AD邊上的高PO,
則由,由面面垂直的性質(zhì)定理,得,
又是矩形,同理,知, ,故.
以AD中點(diǎn)O為坐標(biāo)原點(diǎn),OA所在直線為x軸,OP所在直線為z軸,AD的垂直平分線y軸,建立如圖所示的坐標(biāo)系,則,
連結(jié)AC交BD于點(diǎn)N,由,
所以,又N是AC的中點(diǎn),
所以M是PC的中點(diǎn),則,設(shè)面BDM的法向量為,
,
,得,
令,解得,所以取.
(1)設(shè)PC與面BDM所成的角為,則,
所以直線PC與平面BDM所成角的正弦值為 .
(2)面PAD的法向量為向量,設(shè)面BDM與面PAD所成的銳二面角為,
則,故平面BDM與平面PAD所成銳二面角的大小為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為評(píng)估兩套促銷活動(dòng)方案(方案1運(yùn)作費(fèi)用為5元/件;方案2的運(yùn)作費(fèi)用為2元/件),在某地區(qū)部分營(yíng)銷網(wǎng)點(diǎn)進(jìn)行試點(diǎn)(每個(gè)試點(diǎn)網(wǎng)點(diǎn)只采用一種促銷活動(dòng)方案),運(yùn)作一年后,對(duì)比該地區(qū)上一年度的銷售情況,制作相應(yīng)的等高條形圖如圖所示.
(1)請(qǐng)根據(jù)等高條形圖提供的信息,為該公司今年選擇一套較為有利的促銷活動(dòng)方案(不必說(shuō)明理由);
(2)已知該公司產(chǎn)品的成本為10元/件(未包括促銷活動(dòng)運(yùn)作費(fèi)用),為制定本年度該地區(qū)的產(chǎn)品銷售價(jià)格,統(tǒng)計(jì)上一年度的8組售價(jià)(單位:元/件,整數(shù))和銷量(單位:件)()如下表所示:
售價(jià) | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 |
銷量 | 840 | 800 | 740 | 695 | 640 | 580 | 525 | 460 |
①請(qǐng)根據(jù)下列數(shù)據(jù)計(jì)算相應(yīng)的相關(guān)指數(shù),并根據(jù)計(jì)算結(jié)果,選擇合適的回歸模型進(jìn)行擬合;
②根據(jù)所選回歸模型,分析售價(jià)定為多少時(shí)?利潤(rùn)可以達(dá)到最大.
49428.74 | 11512.43 | 175.26 | |
124650 |
(附:相關(guān)指數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且().
(1)求的通項(xiàng)公式;
(2)設(shè), , 是數(shù)列的前項(xiàng)和,求正整數(shù),使得對(duì)任意均有恒成立;
(3)設(shè), 是數(shù)列的前項(xiàng)和,若對(duì)任意均有恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題中,正確的是( )
①兩個(gè)平面同時(shí)垂直第三個(gè)平面,則這兩個(gè)平面可能互相垂直
②方程 表示經(jīng)過(guò)第一、二、三象限的直線
③若一個(gè)平面中有4個(gè)不共線的點(diǎn)到另一個(gè)平面的距離相等,則這兩個(gè)平面平行
④方程可以表示經(jīng)過(guò)兩點(diǎn)的任意直線
A. ②③ B. ①④ C. ①②④ D. ①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lg(x2﹣5x+6)和的定義域分別是集合A、B,
(1)求集合A,B;
(2)求集合A∪B,A∩B.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) (為常數(shù), 為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)當(dāng)時(shí),討論函數(shù)在區(qū)間上極值點(diǎn)的個(gè)數(shù);
(Ⅱ)當(dāng), 時(shí),對(duì)任意的都有成立,求正實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,設(shè)角A,B,C的對(duì)邊分別為a,b,c,向量=(cosA,sinA),=(﹣sinA,cosA),若=1.
(1)求角A的大;
(2)若b=4 , 且c=a,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) , 則方程g[f(x)]﹣a=0(a為正實(shí)數(shù))的實(shí)數(shù)根最多有( 。﹤(gè).
A.6個(gè)
B.4個(gè)
C.7個(gè)
D.8個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com