16.設(shè)集合A={x|x2<9,x∈Z},B={x|2x>a}.
(1)若a=1,寫(xiě)出A∩B的所有真子集;
(2)若A∩B有4個(gè)子集,求a的取值范圍.

分析 (1)若a=1,求出A∩B,即可寫(xiě)出A∩B的所有真子集;
(2)若A∩B有4個(gè)子集,則A∩B中有且僅有2個(gè)元素,顯然A∩B={1,2},即1∈B,0∉B,即可求a的取值范圍.

解答 解:(1)a=1,B={x|x>$\frac{1}{2}$},A={x|x2<9,x∈Z}={-2,-1,0,1,2},
∴A∩B={1,2},真子集為∅,{1},{2}.
(2)若A∩B有4個(gè)子集,則A∩B中有且僅有2個(gè)元素,顯然A∩B={1,2},即1∈B,0∉B,
∴0≤$\frac{a}{2}$<1,∴0≤a<2,即a的取值范圍是[0,2).

點(diǎn)評(píng) 本題考查集合的運(yùn)算,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在獨(dú)立性檢驗(yàn)中,統(tǒng)計(jì)量Χ2有兩個(gè)臨界值,3.841和6.635,當(dāng)Χ2>3.841時(shí),有95%的把握說(shuō)明兩個(gè)事件有關(guān),當(dāng)Χ2>6.635時(shí),有99%的把握說(shuō)明兩個(gè)事件有關(guān),當(dāng)Χ2<3.841時(shí),認(rèn)為兩個(gè)事件無(wú)關(guān),在一項(xiàng)打鼾與患心臟病的調(diào)查中,共調(diào)出來(lái)2000人,經(jīng)計(jì)算Χ2>20.87,根據(jù)這一數(shù)據(jù)分析,認(rèn)為打鼾與患心臟病之間( 。
A.有95%的把握認(rèn)為兩者有關(guān)B.約有95%的打鼾者患心臟病
C.有99%的把握認(rèn)為兩者有關(guān)D.約有95%的打鼾者患心臟病

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若函數(shù)f(x)=2x(x+a)-1在區(qū)間[0,1]上有零點(diǎn),則實(shí)數(shù)a的取值范圍是[-$\frac{1}{2}$,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)$y=\frac{1}{{\sqrt{2x-2}}}$的定義域?yàn)椋?,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)集合A={x|4≤x<5},B={x|a<x≤2a-1},若A∩B=A,則實(shí)數(shù)a的取值范圍為[3,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知全集U=R,A={x|x2-4x+3≤0},B={x|log3x≥1},則A∩B=( 。
A.{3}B.{x|$\frac{1}{2}$<x≤1}C.{x|x<1}D.{x|0<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知偶函數(shù)f(x)(x≠0)的導(dǎo)函數(shù)為f′(x),且滿足f(1)=0,當(dāng)x>0時(shí),xf′(x)<2f(x),則使f(x)>0成立的x的取值范圍為(-1,0)∪(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}+x,x<0\\-{x^2},x≥0\end{array}\right.$,g(x)為定義在R上的奇函數(shù),且當(dāng)x<0時(shí),g(x)=x2-2x-5,若f(g(a))≤2,則實(shí)數(shù)a的取值范圍是(  )
A.$({-∞,-1}]∪[{0,2\sqrt{2}-1}]$B.$[{-1,2\sqrt{2}-1}]$C.(-∞,-1]∪(0,3]D.[-1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.關(guān)于x的不等式$\frac{1}{2}$<sinx≤$\frac{\sqrt{3}}{2}$,x∈[0,2π]的解集為($\frac{π}{6}$,$\frac{π}{3}$]∪[$\frac{2π}{3}$,$\frac{5π}{6}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案