A. | [-2,2] | B. | [-10,10] | C. | (-∞,-10]∪[10,+∞) | D. | (-∞,-2]∪[2,+∞) |
分析 先求出圓心和半徑,比較半徑和2$\sqrt{2}$,要求 圓上至少有三個不同的點到直線l:x-y+b=0的距離為2$\sqrt{2}$,則圓心到直線的距離應(yīng)小于等于$\sqrt{2}$,用圓心到直線的距離公式,可求得結(jié)果.
解答 解:圓x2+y2-4x-4y-10=0整理為(x-2)2+(y-2)2=18,
∴圓心坐標(biāo)為(2,2),半徑為3$\sqrt{2}$,
要求圓上至少有三個不同的點到直線l:x-y+b=0的距離為2$\sqrt{2}$,
則圓心到直線的距離d=$\frac{|b|}{\sqrt{2}}$≤$\sqrt{2}$,
∴-2≤b≤2,
∴b的取值范圍是[-2,2],
故選A.
點評 本題考查直線和圓的位置關(guān)系,圓心到直線的距離等知識,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -5 | B. | -9 | C. | -7 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2個 | B. | 3個 | C. | 4個 | D. | 5個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{\sqrt{3}}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{8}$ | B. | $-\frac{7}{8}$ | C. | $\frac{17}{25}$ | D. | $-\frac{17}{25}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com