6.若圓x2+y2-4x-4y-10=0上至少有三個不同點到直線l:x-y+b=0的距離為$2\sqrt{2}$,則b的取值范圍是( 。
A.[-2,2]B.[-10,10]C.(-∞,-10]∪[10,+∞)D.(-∞,-2]∪[2,+∞)

分析 先求出圓心和半徑,比較半徑和2$\sqrt{2}$,要求 圓上至少有三個不同的點到直線l:x-y+b=0的距離為2$\sqrt{2}$,則圓心到直線的距離應(yīng)小于等于$\sqrt{2}$,用圓心到直線的距離公式,可求得結(jié)果.

解答 解:圓x2+y2-4x-4y-10=0整理為(x-2)2+(y-2)2=18,
∴圓心坐標(biāo)為(2,2),半徑為3$\sqrt{2}$,
要求圓上至少有三個不同的點到直線l:x-y+b=0的距離為2$\sqrt{2}$,
則圓心到直線的距離d=$\frac{|b|}{\sqrt{2}}$≤$\sqrt{2}$,
∴-2≤b≤2,
∴b的取值范圍是[-2,2],
故選A.

點評 本題考查直線和圓的位置關(guān)系,圓心到直線的距離等知識,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知x,y滿足約束條件$\left\{\begin{array}{l}x-y+5≥0\\ x+y≥0\\ x≤3.\end{array}\right.$,則z=3x-y的最小值為-10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)和g(x)均為奇函數(shù),h(x)=a?f3(x)-b?g(x)-2在區(qū)間(0,+∞)上有最大值5,那么h(x)在(-∞,0)上的最小值為(  )
A.-5B.-9C.-7D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在如圖所示的求函數(shù)f(x)=|x-1|的函數(shù)值的程序框圖中,有六名學(xué)生在空白處的判斷框內(nèi)填入的條件分別是:①x≥1;②x>1;③x≤1;④x<1;⑤x≥0;⑥x≤0,其中正確的個數(shù)是( 。
A.2個B.3個C.4個D.5個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$的圖象向右平移$\frac{π}{6}$個單位后關(guān)于原點對稱,則函數(shù)f(x)=sin(2x+φ)在[0,$\frac{π}{4}$]上的最小值為( 。
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知四面體ABCD中,AB=AC,BD=CD,平面ABC⊥平面BCD,E,F(xiàn)分別為棱BC和AD的中點.
(Ⅰ)求證:AE⊥平面BCD;
(Ⅱ)求證:AD⊥BC;
(Ⅲ)點G在棱AB上,且滿足FG∥平面BCD,求點G在棱AB上的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知$sin(\frac{π}{3}-α)=-\frac{2}{5}$,則$cos(\frac{2015π}{3}-2a)$=( 。
A.$\frac{7}{8}$B.$-\frac{7}{8}$C.$\frac{17}{25}$D.$-\frac{17}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某市一次全市高中男生身高統(tǒng)計調(diào)查數(shù)據(jù)顯示:全市100 000名男生的身高服從正態(tài)分布N(168,16).現(xiàn)從某學(xué)校高三年級男生中隨機抽取50名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部介于160cm和184cm之間,將測量結(jié)果按如下方式分成6組:第一組[160,164],第二組[164,168],組方法得到的頻率分布直方圖.
(Ⅰ)試評估該校高三年級男生在全市高中男生中的平均身高狀況;
(Ⅱ)求這50名男生身高在172cm以上(含172cm)的人數(shù);
(Ⅲ)在這50名男生身高在172cm以上(含172cm)的人中任意抽取2人,該2人中身高排名(從高到低)在全市前130名的人數(shù)記為ξ,求ξ的數(shù)學(xué)期望.
參考數(shù)據(jù):
若ξ-N(μ+σ2).則
p(μ-σ<ξ≤μ+σ)=0.6826,
p(μ-2σ<ξ≤μ+2σ)=0.9544,
p(μ-3σ<ξ≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知命題p:函數(shù)y=log0.5(x2+x+a)的定義域為R,命題q:關(guān)于x的不等式x2-2ax+1≤0在R上有解.若p或q為真命題,p且q為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案