18.已知函數(shù)y=f(x)與y=F(x)的圖象關(guān)于y軸對稱,當函數(shù)y=f(x)和y=F(x)在區(qū)間[a,b]同時遞增或同時遞減時,把區(qū)間[a,b]叫做函數(shù)y=f(x)的“不動區(qū)間”.若區(qū)間[1,2]為函數(shù)f(x)=|2x-t|的“不動區(qū)間”,則實數(shù)t的取值范圍是( 。
A.(0,2]B.[$\frac{1}{2}$,+∞)C.[$\frac{1}{2}$,2]D.[$\frac{1}{2}$,2]∪[4,+∞)

分析 若區(qū)間[1,2]為函數(shù)f(x)=|2x-t|的“不動區(qū)間”,則函數(shù)f(x)=|2x-t|和函數(shù)F(x)=|2-x-t|在[1,2]上單調(diào)性相同,則(2x-t)(2-x-t)≤0在[1,2]上恒成立,進而得到答案.

解答 解:∵函數(shù)y=f(x)與y=F(x)的圖象關(guān)于y軸對稱,
∴F(x)=f(-x)=|2-x-t|,
∵區(qū)間[1,2]為函數(shù)f(x)=|2x-t|的“不動區(qū)間”,
∴函數(shù)f(x)=|2x-t|和函數(shù)F(x)=|2-x-t|在[1,2]上單調(diào)性相同,
∵y=2x-t和函數(shù)y=2-x-t的單調(diào)性相反,
∴(2x-t)(2-x-t)≤0在[1,2]上恒成立,
即1-t(2x+2-x)+t2≤0在[1,2]上恒成立,
即2-x≤t≤2x在[1,2]上恒成立,
即$\frac{1}{2}$≤t≤2,
故選:C

點評 本題考查的知識點是函數(shù)恒成立問題,指數(shù)函數(shù)的圖象和性質(zhì),正確理解不動區(qū)間的定義,是解答的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

15.執(zhí)行如圖的程序框圖,如果輸入的n是4,則輸出的p是3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.如圖程序框圖的算法思路源于我國古代數(shù)學名著《九章算術(shù)》中的“更相減損術(shù)”,執(zhí)行該程序框圖,若輸入a,b分別為2,8,則輸出的a等于( 。
A.4B.0C.14D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.在棱長為5的正四面體P-ABC的三條側(cè)棱PA,PB,PC 上分別取點D,E,F(xiàn),使△DEF三邊長分別為DE=2,F(xiàn)D=FE=3,則不同的取法有(  )
A.1種B.2種C.3種D.4種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}-1,x≥0\\-x+1,x<0\end{array}$,則f(-1)的值為( 。
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若質(zhì)點P的運動方程為S(t)=2t2+t(S的單位為米,t的單位為秒),則當t=1時的瞬時速度為( 。
A.2米/秒B.3米/秒C.4米/秒D.5米/秒

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.函數(shù)f(x)=ax4-4ax3+b(a>0),x∈[1,4],f(x)的最大值為3,最小值為-6,則a+b=$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若函數(shù)f(x)=$\left\{\begin{array}{l}{log_a}x,0<x≤1\\(4-a){x^2}-ax+1,x>1\end{array}$在(0,+∞)上單調(diào)遞增,則實數(shù)a的取值范圍是( 。
A.(1,4)B.$[\frac{5}{2},4)$C.$(1,\frac{5}{2}]$D.$[\frac{5}{2},\frac{8}{3}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.在正方體ABCD-A1B1C1D1中,M為棱AB的中點,則直線B1M與BD1所成角的余弦值是$\frac{\sqrt{15}}{15}$.

查看答案和解析>>

同步練習冊答案