分析 (I)由PA⊥平面ABCD可得PA⊥EF,由△ABC為等腰直角三角形得出AB⊥AC,故而AC⊥EF,于是EF⊥平面PAC;
(II)由MF∥PA,EF∥AB可得平面MEF∥平面PAB,故而EM∥平面PAB;
(III)以A為原點(diǎn)建立空間坐標(biāo)系,求出$\overrightarrow{ME}$,平面PBC的法向量$\overrightarrow{m}$,平面ABCD的法向量$\overrightarrow{AP}$的坐標(biāo),令|cos<$\overrightarrow{ME},\overrightarrow{m}$>|=|cos<$\overrightarrow{ME},\overrightarrow{AP}$>|解出λ.
解答 證明:(Ⅰ)∵在平行四邊形ABCD中∠BCD=135°,∴∠ABC=45°,
∵AB=AC,∴∠BAC=90°,即AB⊥AC.
∵E,F(xiàn)分別為BC,AD的中點(diǎn),∴AB∥EF,∴EF⊥AC.
∵側(cè)面PAB⊥底面ABCD,且∠BAP=90°,
∴PA⊥底面ABCD.又∵EF?底面ABCD,
∴PA⊥EF.
又PA?平面PAC,AC?平面PAC,PA∩AC=A,
∴EF⊥平面PAC.
(Ⅱ)∵M(jìn),F(xiàn)為PD,AD的中點(diǎn),∴MF∥PA,
又MF?平面PAB,PA?平面PAB,
∴MF∥平面PAB.
同理,EF∥平面PAB.
又∵M(jìn)F∩EF=F,MF?平面MEF,EF?平面MEF,
∴平面MEF∥平面PAB.
又∵M(jìn)E?平面MEF,
∴ME∥平面PAB.
(Ⅲ)∵PA⊥底面ABCD,AB⊥AC,∴AP,AB,AC兩兩垂直,
以A為原點(diǎn),分別以AB,AC,AP為x軸、y軸和z軸建立空間直角坐標(biāo)系,
則A(0,0,0),B(2,0,0),C(0,2,0),P(0,0,2),D(-2,2,0),E(1,1,0),
∴$\overrightarrow{PB}$=(2,0,-2),$\overrightarrow{PD}$=(-2,2,-2),$\overrightarrow{BC}$=(-2,2,0),$\overrightarrow{PE}$=(1,1,-2).
設(shè)PM=λPD(0≤λ≤1),則$\overrightarrow{PM}$=λ$\overrightarrow{PD}$=(-2λ,2λ,-2λ).
∴$\overrightarrow{ME}$=$\overrightarrow{PE}-\overrightarrow{PM}$=(2λ+1,1-2λ,2λ-2),
∵AP⊥平面ABCD,
∴$\overrightarrow{n}$=(0,0,1)為平面ABCD的一個(gè)法向量.
設(shè)平面PBC的法向量為$\overrightarrow{m}$=(x,y,z),則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{PB}=0}\\{\overrightarrow{m}•\overrightarrow{BC}=0}\end{array}\right.$.
∴$\left\{\begin{array}{l}{2x-2z=0}\\{-2x+2y=0}\end{array}\right.$.令x=1,得$\overrightarrow{m}$=(1,1,1).
∴cos<$\overrightarrow{n},\overrightarrow{ME}$>=$\frac{2λ-2}{\sqrt{12{λ}^{2}-8λ+6}}$,cos<$\overrightarrow{m},\overrightarrow{ME}$>=$\frac{2λ}{\sqrt{3}\sqrt{12{λ}^{2}-8λ+6}}$.
∵直線ME與平面PBC所成的角和直線ME與平面ABCD所成的角相等,
∴2-2λ=$\frac{2λ}{\sqrt{3}}$,解得λ=$\frac{3-\sqrt{3}}{2}$.
∴$\frac{PM}{PD}=\frac{3-\sqrt{3}}{2}$.
點(diǎn)評(píng) 本題考查了線面平行,線面垂直的判定,空間向量與線面角的計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
2012級(jí) | 2013級(jí) | 2014級(jí) | 2015級(jí) | |
x | 0 | 1 | 2 | 3 |
體考生 | 250 | 260 | 300 | 300 |
足球項(xiàng)目考生 | 35 | 39 | 45 | 48 |
y | 0.14 | 0.15 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | $\frac{9}{2}$ | C. | 6 | D. | $\frac{89}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com