【題目】在一次田徑比賽中,35名運(yùn)動員的成績(單位:分鐘)的莖葉圖如圖所示。

若將運(yùn)動員按成績由好到差編為135號,再用系統(tǒng)抽樣方法從中抽取5人,則其中成績在區(qū)間上的運(yùn)動員人數(shù)為

A.6B.5C.4D.3

【答案】D

【解析】

根據(jù)系統(tǒng)抽樣方法將運(yùn)動員平均分組,得到每組成績及排序;分別討論取序號為之間和之間的運(yùn)動員時滿足題意的運(yùn)動員人數(shù),從而得到結(jié)果.

名運(yùn)動員平均分為組,可得每組成績?nèi)缦拢?/span>

第一組130,130,133,134135,136,136;第二組138,138,138139,141,141,141;

第三組142,142,142,143143,144144;第四組145,145145,146,146147,148;第五組150,151,152152,153,153,153

若每組取排序第、、位的運(yùn)動員,則成績在的為第三組、第四組和第五組的運(yùn)動員,共有

若每組取排序在第、位的運(yùn)動員,則成績在的為第二組、第三組和第四組的運(yùn)動員,共有

綜上所述:成績在的恰好為

本題正確選項(xiàng):

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是偶函數(shù),.

(1)求的值,并判斷函數(shù)上的單調(diào)性,說明理由;

(2)設(shè),若函數(shù)的圖像有且僅有一個交點(diǎn),求實(shí)數(shù)的取值范圍;

(3)定義在上的一個函數(shù),如果存在一個常數(shù),使得式子對一切大于1的自然數(shù)都成立,則稱函數(shù)為“上的函數(shù)”(其中,).試判斷函數(shù)是否為“上的函數(shù)”,若是,則求出的最小值;若不是,則說明理由.(注:).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某足球俱樂部對“一線隊(duì)引援”和“青訓(xùn)”投入分別規(guī)劃如下:2018年,該俱樂部在“一線隊(duì)引援”投入資金為16000萬元,“青訓(xùn)”投入資金為1000萬元.計(jì)劃每年“一線隊(duì)引援”投入比上一年減少一半,“青訓(xùn)”投入比上一年增加一倍.

1)請問哪一年該俱樂部“一線隊(duì)引援”和“青訓(xùn)”投入總和最少?

2)從2018年起包括2018該俱樂部從哪一年開始“一線隊(duì)引援”和“青訓(xùn)”總投入之和不低于62000萬元?(總投入是指各年投入之和)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修;坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,已知某圓的極坐標(biāo)方程為:

)將極坐標(biāo)方程化為普通方程;

)若點(diǎn)P(x,y)在該圓上,求xy的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長為2的正方體中,分別為棱、的中點(diǎn),為棱上的一點(diǎn),且,設(shè)點(diǎn)的中點(diǎn),則點(diǎn)到平面的距離為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃在甲、乙兩個電視臺做總時間不超過300分鐘的廣告,廣告費(fèi)用不超過9萬元,甲、乙電視臺的廣告費(fèi)標(biāo)準(zhǔn)分別是500/分鐘和200元分鐘,假設(shè)甲、乙兩個電視臺為該公司做的廣告能給公司帶來的收益分別為0.4萬元/分鐘和0.2萬元分鐘,那么該公司合理分配在甲、乙兩個電視臺的廣告時間,能使公司獲得最大的收益是()萬元

A.72B.80C.84D.90

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次田徑比賽中,35名運(yùn)動員的成績(單位:分鐘)的莖葉圖如圖所示。

若將運(yùn)動員按成績由好到差編為135號,再用系統(tǒng)抽樣方法從中抽取5人,則其中成績在區(qū)間上的運(yùn)動員人數(shù)為

A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面四邊形中,已知的面積是的面積的3倍,若存在正實(shí)數(shù)使得成立,則的最小值為( )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案