20.二分法是求方程近似解的一種方法,其原理是“一分為二、無限逼近”.執(zhí)行如圖所示的程序框圖,若輸入x1=1,x2=2,d=0.05,則輸出n的值為( 。
A.4B.5C.6D.7

分析 按照用二分法求函數(shù)零點(diǎn)近似值得步驟求解即可.注意驗(yàn)證精確度的要求.

解答 解:模擬執(zhí)行程序框圖,可得
x1=1,x2=2,d=0.05,m=$\frac{3}{2}$,n=1
滿足條件:f(1)•f($\frac{3}{2}$)<0,x2=$\frac{3}{2}$,
不滿足條件:|x1-x2|<0.05,m=$\frac{5}{4}$,n=2,不滿足條件:f(1)•f($\frac{5}{4}$)<0,x1=$\frac{5}{4}$,
不滿足條件:|x1-x2|<0.05,m=$\frac{11}{8}$,n=3,不滿足條件:f($\frac{5}{4}$)•f($\frac{11}{8}$)<0,x1=$\frac{11}{8}$,
不滿足條件:|x1-x2|<0.05,m=$\frac{23}{16}$,n=4,不滿足條件:f($\frac{11}{8}$)•f($\frac{23}{16}$)<0,x1=$\frac{23}{16}$,
不滿足條件:|x1-x2|<0.05,m=$\frac{47}{32}$,n=5,不滿足條件:f($\frac{23}{16}$)•f($\frac{47}{32}$)<0,x1=$\frac{47}{32}$,
滿足條件:|x1-x2|<0.05,退出循環(huán),輸出n的值為5.
故選:B.

點(diǎn)評(píng) 本題主要考查用二分法求區(qū)間根的問題,屬于基礎(chǔ)題型.二分法是把函數(shù)的零點(diǎn)所在區(qū)間一分為二,使區(qū)間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而求零點(diǎn)近似值的方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年江西省高一上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:選擇題

已知全集,且等于( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北省高二文上第一次月考數(shù)學(xué)試卷(解析版) 題型:選擇題

下列程序執(zhí)行后輸出的結(jié)果是( )

A.3 B.6 C.15 D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.圓C1:x2+y2+2x+8y-8=0,圓C2:x2+y2-4x-4y-2=0.
(1)寫出兩圓的圓心和半徑,試判斷圓C1與圓C2的位置關(guān)系;
(2)若經(jīng)過點(diǎn)A(-1,1)的直線1與圓C2相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.?dāng)?shù)列{an}是以a為首項(xiàng),q為公比的等比數(shù)列,數(shù)列{bn}滿足bn=1+a1+a2+…+an(n=1,2,…),數(shù)列{cn}滿足cn=2+b1+b2+…+bn(n=1,2,…).若{cn}為等比數(shù)列,則a+q=( 。
A.$\sqrt{2}$B.3C.$\sqrt{5}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某市春節(jié)期間7家超市廣告費(fèi)支出xi(萬元)和銷售額yi(萬元)數(shù)據(jù)如表:
超市ABCDEFG
廣告費(fèi)支出xi1246111319
銷售額yi19324044525354
(Ⅰ)若用線性回歸模型擬合y與x的關(guān)系,求y與x的線性回歸方程.
(Ⅱ)若用二次函數(shù)回歸模型擬合y與x的關(guān)系,可得回歸方程:$\hat y=-0.17{x^2}$+5x+20,經(jīng)計(jì)算二次函數(shù)回歸模型和線性回歸模型的R2分別約為0.93和0.75,請(qǐng)用R2說明選擇哪個(gè)回歸模型更合適,并用此模型預(yù)測(cè)A超市廣告費(fèi)支出3萬元時(shí)的銷售額.
參考數(shù)據(jù):$\overline x=8,\overline y=42,\sum_{i=1}^7{x_i}{y_i}=2794,\sum_{i=1}^7{{x_i}^2}$=708.
參考公式:$\hat b=\frac{{\sum_{i=1}^n{x_i}{y_i}-n\overline x\overline y}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$$,\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知向量$\overrightarrow{AB}=(2,-1)$,$\overrightarrow{AC}=(-4,1)$,向量$\overrightarrow{BC}$的坐標(biāo)是( 。
A.(-6,2)B.(6,-2)C.(-2,0)D.(2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知向量$\overrightarrow{AB}=(2,-1)$,$\overrightarrow{BC}=(-4,1)$,向量$\overrightarrow{AC}$的坐標(biāo)是( 。
A.(-6,2)B.(6,-2)C.(-2,0)D.(2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知命題p1:?x0∈R,x02+x0+1<0;p2:?x∈[1,2],x2-1≥0.以下命題為真命題的是(  )
A.(¬p1)∧(¬p2B.p1∨(¬p2C.(¬p1)∧p2D.p1∧p2

查看答案和解析>>

同步練習(xí)冊(cè)答案