13.已知△ABC中,A:B:C=1:1:4,則a:b:c等于(  )
A.1:1:$\sqrt{3}$B.2:2:$\sqrt{3}$C.1:1:2D.1:1:4

分析 利用三角形內(nèi)角和公式求得三個(gè)內(nèi)角的值,再利用正弦定理求得a:b:c的值.

解答 解:△ABC中,∵A:B:C=1:1:4,故三個(gè)內(nèi)角分別為30°、30°、120°,
則a:b:c=sin30°:sin30°:sin120°=1:1:$\sqrt{3}$,
故選:A.

點(diǎn)評(píng) 本題主要考查三角形內(nèi)角和公式、正弦定理的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.拋物線C:x2=4y上的點(diǎn)Q到點(diǎn)B(4,1)與到x軸的距離之和的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.對(duì)于函數(shù)f(x)=x圖象上的任一點(diǎn)M,在函數(shù)g(x)=lnx上都存在點(diǎn)N(x0,y0),使以線段MN為直徑的圓都經(jīng)過坐標(biāo)原點(diǎn)O,則x0必然在下面哪個(gè)區(qū)間內(nèi)?(  )
A.($\frac{1}{{e}^{3}}$,$\frac{1}{{e}^{2}}$)B.($\frac{1}{{e}^{2}}$,$\frac{1}{e}$)C.($\frac{1}{e}$,$\frac{1}{2}$)D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知△ABC的三內(nèi)角A,B,C,所對(duì)三邊分別為a,b,c,sin(A-$\frac{π}{4}$)=$\frac{\sqrt{2}}{10}$,若△ABC的面積S=24,b=10,則a的值是( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知命題p:方程x2+2mx+1=0有兩個(gè)不相等的根,命題q:方程x2+2(m-2)x-3m+10=0無實(shí)根,若p∨q為真命題,p∧q為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(Ⅰ) 在圓x2+y2=4上任取一點(diǎn)P,過點(diǎn)P作x軸的垂線段,D為垂足,當(dāng)P在圓上運(yùn)動(dòng)時(shí),求線段PD的中點(diǎn)Q的軌跡方程;
(Ⅱ)記(Ⅰ)中的軌跡為曲線為C,斜率為k(k≠0)的直線l交曲線C于M(x1,y1),N(x2,y2)兩點(diǎn),記直線OM,ON的斜率分別為k1,k2,當(dāng)3(k1+k2)=8k時(shí),證明:直線l過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知直線L:y=x+m與拋物線y2=8x交于A、B兩點(diǎn)(異于原點(diǎn)),
(1)若直線L過拋物線焦點(diǎn),求線段|AB|的長度;
(2)若OA⊥OB,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某校從高一年級(jí)學(xué)生中隨機(jī)抽取100名學(xué)生,將他們期中考試的數(shù)學(xué)成績(均為整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到頻率分布直方圖(如圖所示),
(1)求分?jǐn)?shù)在[70,80)中的人數(shù);
(2)若用分層抽樣的方法從分?jǐn)?shù)在[40,50)和[50,60)的學(xué)生中共抽取5 人,該5 人中成績?cè)赱40,50)的有幾人;
(3)在(2)中抽取的5人中,隨機(jī)抽取2 人,求分?jǐn)?shù)在[40,50)和[50,60)各1 人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=1-ex的圖象與x軸相交于點(diǎn)P,則曲線在點(diǎn)P處的切線的方程為(  )
A.y=-e•x+1B.y=-x+1C.y=-xD.y=-e•x

查看答案和解析>>

同步練習(xí)冊(cè)答案