【題目】解答題。
(1)解方程4x﹣2x﹣2=0.
(2)求不等式 log2(2x+3)>log2(5x﹣6);
(3)求函數y=( ) ,x∈[0,5)的值域.
【答案】
(1)解:原方程可化為(2x)2﹣2x﹣2=0.
令2x=t,則t>0,所以t2﹣t﹣2=0,
解得t=2或t=﹣1(舍).
由2x=2解得x=1
(2)解:原不等式等價于 ,解得 <x<3,
∴原不等式的解集為( ,3)
(3)解:令u=x2﹣4x,x∈[0,5),則﹣4≤u<5,
則 ,即 .
即值域為( ]
【解析】(1)利用換元法化圓方程為一元二次方程求解;(2)直接利用對數函數的單調性化對數不等式為一元一次不等式組求解;(3)令u=x2﹣4x換元,由x得范圍求得u的范圍,再由指數函數的單調性得答案.
【考點精析】解答此題的關鍵在于理解指、對數不等式的解法的相關知識,掌握指數不等式的解法規(guī)律:根據指數函數的性質轉化;對數不等式的解法規(guī)律:根據對數函數的性質轉化.
科目:高中數學 來源: 題型:
【題目】已知銷售“筆記本電腦”和“臺式電腦”所得的利潤分別是P(單位:萬元)和Q(單位:萬元),它們與進貨資金t(單位:萬元)的關系有經驗公式P= t和Q= .某商場決定投入進貨資金50萬元,全部用來購入這兩種電腦,那么該商場應如何分配進貨資金,才能使銷售電腦獲得的利潤y(單位:萬元)最大?最大利潤是多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題正確的是( )
A.在△ABC中,角A,B,C的對邊分別是a,b,c,則a>b是cos A<cos B的充要條件
B.命題p:對任意的x∈R,x2+x+1>0,則¬p:對任意的x∈R,x2+x+1≤0
C.已知p: >0,則¬p: ≤0
D.存在實數x∈R,使sin x+cos x= 成立
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是定義在R上的偶函數,且當x≤0時,f(x)=x2+2x.現已畫出函數f(x)在y軸左側的圖象,如圖所示,并根據
(1)寫出函數f(x)(x∈R)的增區(qū)間;
(2)寫出函數f(x)(x∈R)的解析式;
(3)若函數g(x)=f(x)﹣2ax+2(x∈[1,2]),求函數g(x)的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,設O是平行四邊形ABCD的兩條對角線AC,BD的交點,下列向量組:
① 與 ;② 與 ;
③ 與 ;④ 與 .
其中可作為這個平行四邊形所在平面的一組基底的是( ).
A.①②
B.③④
C.①③
D.①④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數 的圖象向左平移 個單位,得到函數y=f(x)的圖象,則下列關于函數y=f(x)的說法正確的是( )
A.奇函數
B.周期是
C.關于直線 對稱
D.關于點 對稱
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)如圖所示,一根水平放置的長方體枕木的安全負荷與它的厚度d的平方和寬度a的乘積成正比,同時與它的長度的平方成反比.
(1)在a>d>0的條件下,將此枕木翻轉90°(即寬度變?yōu)榱撕穸?/span>),枕木的安全負荷會發(fā)生變化嗎?變大還是變?
(2)現有一根橫截面為半圓(半圓的半徑為R=)的柱形木材,用它截取成橫截面為長方形的枕木,其長度即為枕木規(guī)定的長度l,問橫截面如何截取,可使安全負荷最大?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com