【題目】 某山區(qū)外圍有兩條相互垂直的直線型公路,為進(jìn)一步改善山區(qū)的交通現(xiàn)狀,計(jì)劃修建一條連接兩條公路的山區(qū)邊界的直線型公路,記兩條相互垂直的公路為,山區(qū)邊界曲線為,計(jì)劃修建的公路為,如圖所示,為的兩個(gè)端點(diǎn),測得點(diǎn)到的距離分別為5千米和40千米,點(diǎn)到的距離分別為20千米和2.5千米,以所在的直線分別為軸,建立平面直角坐標(biāo)系,假設(shè)曲線符合函數(shù)(其中為常數(shù))模型.
(1)求的值;
(2)設(shè)公路與曲線相切于點(diǎn),的橫坐標(biāo)為.
①請(qǐng)寫出公路長度的函數(shù)解析式,并寫出其定義域;
②當(dāng)為何值時(shí),公路的長度最短?求出最短長度.
【答案】(1),;(2)①;②當(dāng) 時(shí),公路 的長度最短,最短長度為千米.
【解析】
試題分析:(1)由題意,可知點(diǎn),的坐標(biāo),代入函數(shù)可求解得到;(2)①設(shè)切點(diǎn)為,根據(jù)導(dǎo)數(shù)的幾何意義求得切線方程,并且切線與,軸分別于,點(diǎn),求得點(diǎn)的坐標(biāo),并表示,②,設(shè),根據(jù)導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,求定義域內(nèi)的最值.
試題解析:(1)由題意知,點(diǎn),的坐標(biāo)分別為,.
將其分別代入,得,解得
(2)①由⑴得,則點(diǎn)的坐標(biāo)為,
∵,∴切線的方程為,
設(shè)曲線在點(diǎn)處的切線交,軸分別于,點(diǎn),則,,
∴
②設(shè),則,令解得,
當(dāng)時(shí),,是減函數(shù);
當(dāng)時(shí),,是增函數(shù);
從而,當(dāng) 時(shí),函數(shù)有極小值,也是最小值.
∴,∴.
答:當(dāng) 時(shí),公路 的長度最短,最短長度為千米
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,上頂點(diǎn)為,短軸長為2,為原點(diǎn),直線與橢圓的另一個(gè)交點(diǎn)為,且的面積是的面積的3倍.
(1)求橢圓的方程;
(2)直線與橢圓相交于兩點(diǎn),若在橢圓上存在點(diǎn),使為平行四邊形,求取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對(duì)數(shù)的底數(shù)).
(1)求的解析式及單調(diào)遞減區(qū)間;
(2)是否存在常數(shù),使得對(duì)于定義域內(nèi)的任意, 恒成立,若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等比數(shù)列的前項(xiàng)和為,已知對(duì)任意的,點(diǎn)均在函數(shù)(且, 均為常數(shù))的圖象上.
(1)求的值;
(2)當(dāng)時(shí),記,證明:對(duì)任意的,不等式成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線經(jīng)過點(diǎn)A,求:
(1)直線在兩坐標(biāo)軸上的截距相等的直線方程;
(2)直線與兩坐標(biāo)軸的正半軸圍成三角形面積最小時(shí)的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解下列關(guān)于x的不等式.
(1) 4x--7·2x-2-1>0;
(2) loga(2x+1)>2loga(1-x)(其中a是正的常數(shù),且a≠1).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù)),,.
(1)求曲線在處的切線方程;
(2)討論函數(shù)的極小值;
(3)若對(duì)任意的,總存在,使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱柱的底面是邊長為2的菱形,且,⊥平面,,設(shè)為的中點(diǎn).
(1)求證:⊥平面;
(2)點(diǎn)在線段上,且平面,求平面和平面所成銳角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)樣本x1,x2,…,x10數(shù)據(jù)的平均值和方差分別為3和5,若yi=xi+a(a為非零實(shí)數(shù),i=1,2,…,10),則y1,y2,…,y10的均值和方差分別為( )
A. 3,5 B. 3+a,5 C. 3+a,5+a D. 3,5+a
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com