【題目】如圖,三棱柱中,側(cè)面是邊長為2的菱形,且 ,四棱錐的體積為2,點在平面內(nèi)的正投影為,且,在線段上,且

)證明:直線平面;

)求二面角的余弦值.

【答案】證明見解析;

【解析】試題分析:(1)通過構(gòu)造輔助線FH,證明為平行四邊形,即借助線線平行證明線面平行;(2)借助底面四邊形的對角線互相垂直,建立空間直角坐標(biāo),利用向量方法求解二面角.

(Ⅰ)解析:

因為四棱錐的體積為2,

,所以

,所以即點是靠近點的四等分點,

過點于點,所以,

,所以,

所以四邊形為平行四邊形,

所以,所以直線平面.

(Ⅱ)

設(shè)的交點為, 所在直線為軸, 所在直線為軸,過點作平面的垂線為軸,建立空間直角坐標(biāo)系,如圖所示:

設(shè)平面的法向量為,

,則 ,則

,即為所求.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)如圖,長方形材料中,已知,.點為材料內(nèi)部一點,,,且,. 現(xiàn)要在長方形材料中裁剪出四邊形材料,滿足,點分別在邊上.

(1)設(shè),試將四邊形材料的面積表示為的函數(shù),并指明的取值范圍;

(2)試確定點上的位置,使得四邊形材料的面積最小,并求出其最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓x2+y2-2y-1=0關(guān)于直線y=x對稱的圓的方程是 (  )

A. (x-1)2+y2=2 B. (x+1)2+y2=2 C. (x-1)2+y2=4 D. (x+1)2+y2=4

【答案】A

【解析】 的標(biāo)準(zhǔn)方程為,所以圓心為(0,1),半徑為,圓心關(guān)于直線的對稱點是(1,0),所以圓x2y22y10關(guān)于直線yx對稱的圓的方程是,選A.

點睛:本題主要考查圓關(guān)于直線的對稱的圓的方程,屬于基礎(chǔ)題。解答本題的關(guān)鍵是求出圓心關(guān)于直線的對稱點,兩圓半徑相同。

型】單選題
結(jié)束】
8

【題目】已知雙曲線的離心率為,焦點是, ,則雙曲線方程為 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬, 田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機(jī)選一匹進(jìn)行一場比賽,則田忌的馬獲勝的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某花店每天以每枝5元的價格從農(nóng)場購進(jìn)若干枝玫瑰花,然后以每枝10元的價格出售.如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.

1)若花店一天購進(jìn)17枝玫瑰花,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式;

2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:

日需求量n

14

15

16

17

18

19

20

頻數(shù)

10

20

16

16

15

13

10

假設(shè)花店在這100天內(nèi)每天購進(jìn)17枝玫瑰花,求這100天的日利潤(單位:元)的平均數(shù);

若花店一天購進(jìn)17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤不少于75元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,四邊形是菱形, ,又平面,

是棱的中點, 在棱上,且.

(1)證明:平面平面;

(2)若平面,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線Cy2=2px過點P(1,1).過點(0, )作直線l與拋物線C交于不同的兩點M,N,過點Mx軸的垂線分別與直線OP,ON交于點AB,其中O為原點.

(Ⅰ)求拋物線C的方程,并求其焦點坐標(biāo)和準(zhǔn)線方程;

(Ⅱ)求證:A為線段BM的中點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點,動圓經(jīng)過點且和直線相切,記動圓的圓心的軌跡為曲線.

(1)求曲線的方程;

(2)設(shè)曲線上一點的橫坐標(biāo)為,過的直線交于一點,交軸于點,過點的垂線交于另一點,若的切線,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標(biāo)原點,橢圓 的左焦點是,離心率為,且上任意一點的最短距離為.

(1)求的方程;

(2)過點的直線(不過原點)與交于兩點, 為線段的中點.

(i)證明:直線的斜率乘積為定值;

(ii)求面積的最大值及此時的斜率.

查看答案和解析>>

同步練習(xí)冊答案