若方程
x2
m+2
-
y2
m+1
=1
表示橢圓,則實(shí)數(shù)m的取值范圍是
(-2,-
3
2
)∪(-
3
2
,-1)
(-2,-
3
2
)∪(-
3
2
,-1)
分析:根據(jù)題意,將方程化成橢圓的標(biāo)準(zhǔn)方程,可得關(guān)于m的不等式組,解之即可得到實(shí)數(shù)m的取值范圍.
解答:解:∵方程
x2
m+2
-
y2
m+1
=1
表示橢圓,
∴將方程化為標(biāo)準(zhǔn)形式,得
x2
m+2
+
y2
-m-1
=1

可得
m+2>0
-m-1>0
m+2≠-m-1
,解之得-2<m<-1且m
3
2

m∈(-2,-
3
2
)∪(-
3
2
,-1)

故答案為:(-2,-
3
2
)∪(-
3
2
,-1)
點(diǎn)評(píng):本題給出含有字母參數(shù)m的方程,在方程表示橢圓的情況下求m的范圍.著重考查了橢圓的標(biāo)準(zhǔn)方程與簡(jiǎn)單幾何性質(zhì)等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m為實(shí)常數(shù).命題p:方程
x2
2m
-
y2
m-6
=1
表示焦點(diǎn)在y軸上的橢圓;命題q:方程
x2
m+1
+
y2
m-1
=1
表示雙曲線.
(1)若命題p為真命題,求m的取值范圍;
(2)若命題q為假命題,求m的取值范圍;
(3)若命題p或q為真命題,且命題p且q為假命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若方程
x2
m-1
+
y2
3-m
=1
表示焦點(diǎn)在y軸上的橢圓,則實(shí)數(shù)m的取值范圍為
(1,2)
(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若方程
x2
m
-
y2
m2-2
=1
表示焦點(diǎn)在y軸上的橢圓,那么實(shí)數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)設(shè)橢圓
x2
m+1
+y2=1
的兩個(gè)焦點(diǎn)是F1(-c,0)、F2(c,0)(c>0),且橢圓上存在點(diǎn)M,使
MF1
MF2
=0

(1)求實(shí)數(shù)m的取值范圍;
(2)若直線l:y=x+2與橢圓存在一個(gè)公共點(diǎn)E,使得|EF1|+|EF2|取得最小值,求此最小值及此時(shí)橢圓的方程;
(3)是否存在斜率為k(k≠0)的直線l,與條件(Ⅱ)下的橢圓交于A、B兩點(diǎn),使得經(jīng)過(guò)AB的中點(diǎn)Q及N(0,-1)的直線NQ滿足
NQ
AB
=0
?若存在,求出k的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若方程
x2
m
-
y2
m2-2
=1
表示焦點(diǎn)在y軸上的橢圓,那么實(shí)數(shù)m的取值范圍是( 。
A.m>0B.0<m<1C.-2<m<1D.m>1且m≠
2

查看答案和解析>>

同步練習(xí)冊(cè)答案