在平面直角坐標(biāo)系xOy中,已知直線l的方程為2x+(k-3)y-2k+4=0,k∈R.
(Ⅰ)若坐標(biāo)原點O關(guān)于直線l的對稱點O′坐標(biāo)為(a,2),求k的值.
(Ⅱ)求坐標(biāo)原點O到直線l距離的最大值.
考點:直線的一般式方程
專題:直線與圓
分析:(I)把線段OO′的中點M(
a
2
,1)
代入直線l的方程即可解出;
(II)利用點到直線的距離公式、基本不等式的性質(zhì)即可得出.
解答: 解:(I)線段OO′的中點M(
a
2
,1)
,代入直線l的方程可得2×
a
2
+(k-3)×1-2k+4=0,
化為k=a+1.
(II)坐標(biāo)原點O到直線l距離d=
|-2k+4|
4+(k-3)2

考慮k>2時,d=
2
(k-2)+
5
k-2
-2
2
2
5
-2
=
2
5
+2
2
,當(dāng)且僅當(dāng)k=2+
5
時取等號.
∴d的最大值為:
2
5
+2
2
點評:本題考查了中點坐標(biāo)公式、點到直線的距離公式、基本不等式的性質(zhì),考查了計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)是否存在實數(shù)p,使“4x+p<0”是“x2-x-2>0”的充分條件?如果存在,求出p的取值范圍;
(2)是否存在實數(shù)p,使“4x+p<0”是“x2-x-2>0”的必要條件?如果存在,求出p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:
(1)(3
3
8
)-
2
3
-(5
4
9
)0.5+(0.008)-
2
3
×
2
25

(2)已知x
1
2
+x-
1
2
=3
,試計算:
x2+x-2-7
x+x-1+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
5
5
,左右焦點分別為F1,F(xiàn)2,點P在橢圓上,滿足PF1⊥F1F2,且S △PF1F2=
4
5
5

(1)求橢圓C的標(biāo)準(zhǔn)方程.
(2)若點A,B是橢圓C上的兩點,求△AOB的最大面積;并當(dāng)△AOB面積取最大值時,求AB的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)的定義域為[-1,3],則函數(shù)y=f(3x-2)的定義域為(  )
A、[-5,7]
B、[
1
3
5
3
]
C、[-5,
5
3
]
D、[
1
3
,7
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈(-
1
2
,0],函數(shù)f(x)的定義域是(0,1],求g(x)=f(x+a)+f(x-a)+f(x)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|0<x<a+1}(a為常數(shù)),N={x|x2-2x-3≤0},若M∪N=N,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=-2x+(
b
2
x+1(b為常數(shù)),若f(x)是奇函數(shù),求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知0<α<
π
2
<β<π,tan
α
2
=
1
2
,cos(β-α)=
2
10

(1)求sinα的值;
(2)求β的值.

查看答案和解析>>

同步練習(xí)冊答案