4.已知p:?x∈[$\frac{1}{2}$,2],2x<m(x2+1),q:函數(shù)f(x)=4x-2x+1-1+m存在零點(diǎn),若“p且q”為真命題,則實(shí)數(shù)m的取值范圍為(1,+∞).

分析 p:?x∈[$\frac{1}{2}$,2],2x<m(x2+1)?m>$(\frac{2x}{{x}^{2}+1})_{max}$,利用基本不等式的性質(zhì)即可得出.q:函數(shù)f(x)=4x-2x+1-1+m存在零點(diǎn),可得m=(2x-1)2-2≥-2.利用“p且q”為真命題,即可得出.

解答 解:p:?x∈[$\frac{1}{2}$,2],2x<m(x2+1),∴m>$(\frac{2x}{{x}^{2}+1})_{max}$,∵$\frac{2x}{{x}^{2}+1}$≤$\frac{2x}{2x}$=1,當(dāng)且僅當(dāng)x=1時取等號.
∴m>1.
q:函數(shù)f(x)=4x-2x+1-1+m存在零點(diǎn),∴m=(2x-1)2-2≥-2.當(dāng)且僅當(dāng)x=0時取等號.
若“p且q”為真命題,則$\left\{\begin{array}{l}{m>1}\\{m≥-2}\end{array}\right.$,解得m>1.
則實(shí)數(shù)m的取值范圍為(1,+∞).
故答案為:(1,+∞).

點(diǎn)評 本題考查了函數(shù)的單調(diào)性、基本不等式的性質(zhì)、簡易邏輯的應(yīng)用,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知f(x)=2|x+1|-2,當(dāng)f(f(x))=mx有四個解時,實(shí)數(shù)m的取值范圍是(0,$\frac{4}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知數(shù)列{an}的通項an=10n+5,n∈N *,其前n項和為Sn,令${T_n}=\frac{S_n}{{5•{2^n}}}$,若對一切正整數(shù)n,總有Tn≤m成立,則實(shí)數(shù)m的最小值是(  )
A.4B.3C.2D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.若(x2-3x+2)5=${a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}+…+{a_{10}}{x^{10}}$
(1)求a2
(2)求a1+a2+a3+…+a10
(3)求$({a_0}+{a_2}+{a_4}+{a_6}+{a_8}{+_{10}}{)^2}$-$({a_1}+{a_3}+{a_5}+{a_7}+{a_9}{)^2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.函數(shù)f(x)=$\frac{1}{2}$x2-3x+2lnx,求函數(shù)f(x)在[1,e]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)直線x=m分別交函數(shù)$y=sinx、y=sin(x+\frac{π}{2})$的圖象于M、N、兩點(diǎn),則M、N距離的最大值為( 。
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=log4(4x+1)-ax,(x∈R)是偶函數(shù),
(1)求a的值
(2)若方程f(x)-k=0有解,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列說法正確的是( 。
A.任何事件的概率總是在(0,1]之間
B.頻率是客觀存在的,與試驗次數(shù)無關(guān)
C.隨著試驗次數(shù)的增加,事件發(fā)生的頻率一般會穩(wěn)定于概率
D.概率是隨機(jī)的,在試驗前不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖,在正方形ABCD中,AD=4,E為DC上一點(diǎn),且$\overrightarrow{DE}$=3$\overrightarrow{EC}$,F(xiàn)為BC的中點(diǎn),則$\overrightarrow{AE}$•$\overrightarrow{AF}$=20.

查看答案和解析>>

同步練習(xí)冊答案