分析 求出f(f(x))的解析式,作出y=f(f(x))與y=mx的函數(shù)圖象,根據函數(shù)圖象的交點個數(shù)判斷m的范圍.
解答 解:令f(x)≤-1,即2|x+1|-2≤-1,解得-$\frac{3}{2}$≤x≤-$\frac{1}{2}$,
∴f(f(x))=2|f(x)+1|-2=-2f(x)-2-2=-2f(x)-4=-2[2|x+1|-2]-4=-4|x+1|,
令f(x)>-1,即2|x+1|-2>-1,解得x<-$\frac{3}{2}$或x>$-\frac{1}{2}$.
∴f(f(x))=2|f(x)+1|-2=2f(x)=4|x+1|-4,
作出y=f(f(x))和y=mx的函數(shù)圖象如圖所示:
∵f(f(x))=mx有四個解,
∴0<m<$\frac{4}{3}$,
故答案為:(0,$\frac{4}{3}$).
點評 本題考查了函數(shù)解析式的求解,方程根與函數(shù)圖象的關系,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | $\sqrt{41}$ | C. | 6 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($\sqrt{2}$,$\frac{π}{4}$) | B. | ($-\sqrt{2}$,$\frac{3}{4}π$) | C. | (1,$\frac{3}{4}π$) | D. | (-1,$\frac{π}{4}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com