6.已知f(x)=$\left\{\begin{array}{l}{ln(1-x),x<0}\\{{x}^{2}-ax,x≥0}\end{array}\right.$,且g(x)=f(x)+$\frac{x}{2}$有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為(  )
A.($\frac{1}{2}$,+∞)B.[1,+∞)C.(0,$\frac{1}{2}$ )D.(0,1]

分析 根據(jù)圖象得出g(x)在(-∞,0)上的零點(diǎn)個(gè)數(shù),得出g(x)在[0,+∞)上的零點(diǎn)個(gè)數(shù),利用二次函數(shù)的性質(zhì)得出a的范圍.

解答 解:令g(x)=0得f(x)=-$\frac{x}{2}$,
作出f(x)=ln(1-x)與y=-$\frac{x}{2}$的函數(shù)圖象,

由圖象可知f(x)與y=-$\frac{x}{2}$在(-∞,0)上只有1個(gè)交點(diǎn),
∴g(x)=0在(-∞,0)上只有1個(gè)零點(diǎn),
∴f(x)=-$\frac{1}{2}x$在[0,+∞)上有2個(gè)零點(diǎn),即得到x2-ax+$\frac{x}{2}$=0在[0,+∞)上有兩解,
解方程x2-ax+$\frac{x}{2}$=0得x1=0,x2=a-$\frac{1}{2}$,
∴a-$\frac{1}{2}$>0,即a$>\frac{1}{2}$.
故選A.

點(diǎn)評(píng) 本題考查了函數(shù)零點(diǎn)與函數(shù)圖象的關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在數(shù)列{an}中,若$\sqrt{{a}_{n+1}}$=$\sqrt{{a}_{n}}$+$\sqrt{2}$,a1=8,則數(shù)列{an}的通項(xiàng)公式為(  )
A.an=2(n+1)2B.an=4(n+1)C.an=8n2D.an=4n(n+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.歐拉公式eix=cosx+isinx (i為虛數(shù)單位)是瑞士數(shù)學(xué)家歐拉發(fā)明的,將指數(shù)的定義域擴(kuò)大到復(fù)數(shù)集,建立了三角函數(shù)和指數(shù)函數(shù)的聯(lián)系,被譽(yù)為“數(shù)學(xué)中的天橋”.根據(jù)歐拉公式可知,e${\;}^{\frac{π}{3}i}$表示的復(fù)數(shù)的模為( 。
A.$\frac{1}{2}$B.1C.$\frac{\sqrt{3}}{2}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.某小賣(mài)部為了了解熱茶銷(xiāo)售量y(杯)與氣溫x(℃)之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某4天賣(mài)出的熱茶的杯數(shù)與當(dāng)天氣溫,并制作了對(duì)照表:
氣溫(℃)181310-1
杯數(shù)24343864
由表中數(shù)據(jù)算得線性回歸方程$\stackrel{∧}{y}$=bx+a中的b=-2,預(yù)測(cè)當(dāng)氣溫為-5°時(shí),熱茶銷(xiāo)售量為(  )
A.70B.50C.60D.80

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)函數(shù)f(x)與函數(shù)g(x)是定義在同一區(qū)間上的兩個(gè)函數(shù),若函數(shù)y=f(x)-g(x)在次區(qū)間上有兩個(gè)不同的零點(diǎn),則稱函數(shù)f(x),g(x)在此區(qū)間上是“交織函數(shù)”,若f(x)=4|x|-$\frac{9}{4}$與g(x)=2x+m在(-∞,+∞)上是“交織函數(shù)”,則m的取值范圍為( 。
A.(-$\frac{9}{4}$,-2]B.[-1,0]C.(-∞,-2]D.(-$\frac{9}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知等比數(shù)列{an}的公比q>1,且滿足:a2+a3+a4=28,且a3+2是a2,a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=anlog${\;}_{\frac{1}{2}}$an,Sn=b1+b2+…+bn,求使Sn+n•2n+1>62成立的正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知命題p:?x0∈R,2x0+1≤0,則命題p的否定是( 。
A.?x0∈R,2x0+1>0B.?x∈R,2x+1>0C.?x0∈R,2x0+1≤0D.?x∈R,2x+1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)f(x)=2x3-3x,則在f(x)的切線中,斜率最小的一條切線方程為y=-3x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.復(fù)數(shù)z=3i(i+1)的實(shí)部與虛部分別為( 。
A.3,3B.-3,-3iC.-3,3D.-3,3i

查看答案和解析>>

同步練習(xí)冊(cè)答案