如圖,平面平面,四邊形為矩形,的中點,

(1)求證:
(2)若與平面所成的角為,求二面角的余弦值.
(1)詳見解析;(2).

試題分析:(1)連接,要證,只需證明,只需證明, 由已知面面垂直,易證,所以,,得到,因為,易證,所以,得,得證,即證 ;(2)設(shè)由(1)法一:知,為等邊三角形,設(shè),則,分別為,的中點,也是等邊三角形.取的中點,連結(jié),,則,
所以為二面角的平面角,然后用余弦定理計算.法二:如圖建立空間直角坐標(biāo)系,分別計算兩個平面的法向量,利用公式,根據(jù)實際圖形為鈍二面角.
試題解析:如圖:

(1)證明:連結(jié),因,的中點,

又因平面平面,
平面,            2分
于是
,
所以平面,
所以,                 4分
又因,
平面,
所以.                 6分
(2)解法一:由(I),得.不妨設(shè),.          7分
為直線與平面所成的角,

所以,為等邊三角形.                        9分
設(shè),則,分別為,的中點,也是等邊三角形.
的中點,連結(jié),,則,
所以為二面角的平面角.                     12分
中,,,                      13分
,
即二面角的余弦值為.                            14分
解法二:取的中點,以為原點,,,所在的直線分別為,軸建立空間直角坐標(biāo)系.不妨設(shè),,則,,,   8分
從而,.
設(shè)平面的法向量為,
,得
可取.            10分
同理,可取平面的一個法向量為  
.                 12分
于是,   13分
易見二面角的平面角與互補(bǔ),
所以二面角的余弦值為.                        14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,底面為矩形,平面,,中點.

(1)證明://平面
(2)證明:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐中,底面為直角梯形,, ,平面,且的中點

(1) 證明:面
(2) 求面與面夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,矩形中,,,且,交于點.

(Ⅰ)求證:;
(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知、、為不在同一直線上的三點,且.

(1)求證:平面//平面;
(2)若平面,且,,,求證:平面;
(3)在(2)的條件下,設(shè)點上的動點,求當(dāng)取得最小值時的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

是兩條不同的直線,是三個不同的平面,則下列命題中正確命題是(     )
A.若,則
B.若,,則
C.若,則
D.若

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)為兩兩不重合的平面,為兩兩不重合的直線,給出下列四個命題:
(1)若,則;
(2)若,,,則;
(3)若,則;
(4)若,,,,則
其中正確的命題是(  )
A.(1)(3)B.(2)(3)
C.(2)(4)D.(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

三棱錐中,分別是的中點,則四邊形是(   )
A.菱形  B.矩形 C.梯形   D.正方形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知面,,直線,直線,斜交,則(  )
A.不垂直但可能平行B.可能垂直也可能平行
C.不平行但可能垂直D.既不垂直也不平行

查看答案和解析>>

同步練習(xí)冊答案