18.已知命題p:x2-ax-a+$\frac{5}{4}$≥0對(duì)任意的x∈R恒成立;命題q:關(guān)于x的不等式x2+2x+a<0有實(shí)數(shù)解. 若命題“p∨q”為真命題,且“p∧q”為假命題,求實(shí)數(shù) a的取值范圍.

分析 若p為 真,則${△_1}={({-a})^2}-4({\frac{5}{4}-a})={a^2}+4a-5≤0$,解出a的范圍.若q為 真,不等式x2+2x+a<0有解,△2>0,解得a范圍.由命題p∨q為真,p∧q為假,可得p,q,一真一假.

解答 解:若p為 真,則${△_1}={({-a})^2}-4({\frac{5}{4}-a})={a^2}+4a-5≤0$,解得-5≤a≤1.
若q為 真,不等式x2+2x+a<0有解,△2=4-4a>0,解得a<1.
∵命題p∨q為真,p∧q為假,∴p,q,一真一假.
(1)p真q假,則$\left\{\begin{array}{l}-5≤a≤1\\ a≥1\end{array}\right.$,∴a=1.
(2)若p假q真,則$\left\{\begin{array}{l}a<-5或a>1\\ a<1\end{array}\right.$,∴a<-5,
綜上,a的取值范圍是{a|a<-5或a=1}.

點(diǎn)評(píng) 本題考查了不等式的解集與判別式的關(guān)系、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知平面直角坐標(biāo)系內(nèi)的兩個(gè)向量,$\overrightarrow{a}$=(1,2),$\overrightarrow$=(m,3m-2),且平面內(nèi)的任一向量$\overrightarrow{c}$都可以唯一的表示成$\overrightarrow{c}$=λ$\overrightarrow{a}$+$μ\overrightarrow$(λ,μ為實(shí)數(shù)),則m的取值范圍是(-∞,2)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.不等式-x2+3x-2>0的解集是(  )
A.(-∞,-2)∪(-1,+∞)B.(-∞,1)∪(2,+∞)C.(1,2)D.(-2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.下列命題中正確的有(2)(3)(5).
(1)常數(shù)數(shù)列既是等差數(shù)列也是等比數(shù)列;
(2)在△ABC中,若sin2A+sin2B=sin2C,則△ABC為直角三角形;
(3)若A,B為銳角三角形的兩個(gè)內(nèi)角,則tanAtanB>1;
(4)若Sn為數(shù)列{an}的前n項(xiàng)和,則此數(shù)列的通項(xiàng)an=Sn-Sn-1(n>1).
(5)等比數(shù)列{an}的前n項(xiàng)和為Sn,S2=3,S6=63,則S4=15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知a+a-1=$\frac{5}{2}$(a>1)
(1)求下列各式的值:
(Ⅰ)a${\;}^{-\frac{1}{2}}$+a${\;}^{\frac{1}{2}}$;
(Ⅱ)a${\;}^{\frac{3}{2}}$+a${\;}^{-\frac{3}{2}}$;
(2)已知2lg(x-2y)=lgx+lgy,求loga$\frac{y}{x}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)正項(xiàng)數(shù)列{an}的前n項(xiàng)和Sn,且滿足2Sn=an2+an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列bn=$\frac{{{a_{n+1}}}}{{{a_{n+2}}}}$+$\frac{{{a_{n+2}}}}{{{a_{n+1}}}}$,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,求證:Tn<2n+$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.?dāng)?shù)列{an}的通項(xiàng)公式為an=$\frac{1}{{4{n^2}-1}}$,則數(shù)列{an}的前n項(xiàng)和Sn=( 。
A.$\frac{2n}{2n+1}$B.$\frac{n}{2n+1}$C.$\frac{2n}{4n+1}$D.$\frac{n}{4n+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知兩動(dòng)圓F1:(x+$\sqrt{3}$)2+y2=r2和F2:(x-$\sqrt{3}$)2+y2=(4-r)2(0<r<4),把它們的公共點(diǎn)的軌跡記為曲線C,若曲線C與y軸的正半軸的交點(diǎn)為M,且曲線C上的相異兩點(diǎn)A、B滿足:$\overrightarrow{MA}$•$\overrightarrow{MB}$=0.
(1)求曲線C的方程;
(2)證明直線AB恒經(jīng)過(guò)一定點(diǎn),并求此定點(diǎn)的坐標(biāo);
(3)求△ABM面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)函數(shù)f (x)的定義域?yàn)镮,若對(duì)?x∈I,都有f(x)<x,則稱f(x)為τ-函數(shù);若對(duì)?x∈I,都有f[f(x)]<x,則稱f(x)為Γ一函數(shù).給出下列命題:
①f(x)=ln(l+x)(x≠0)為τ-函數(shù);
②f(x)=sinx (0<x<π)為Γ一函數(shù);
③f(x)為τ-函數(shù)是(x)為Γ一函數(shù)的充分不必要條件;
④f(x)=ax2-1既是τ一函數(shù)又是Γ一函數(shù)的充要條件是a<-$\frac{1}{4}$.
其中真命題有①②④.(把你認(rèn)為真命題的序號(hào)都填上)

查看答案和解析>>

同步練習(xí)冊(cè)答案