9.在△ABC中,B=60°,且c=8,b-a=4,則b=7.

分析 由已知可求a=b-4,利用余弦定理即可解得b的值.

解答 解:∵B=60°,且c=8,b-a=4,可得:a=b-4,
∴由余弦定理可得:b2=a2+c2-2accosB=a2+c2-ac=(b-4)2+64-8(b-4),
∴整理,解得:b=7.
故答案為:7.

點(diǎn)評(píng) 本題主要考查了余弦定理在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)f(x)=sin2x+$\sqrt{3}$cos2x,則下列結(jié)論正確的是( 。
A.f(x)的圖象關(guān)于點(diǎn)$(\frac{2π}{3},0)$中心對(duì)稱
B.f(x)在$[0,\frac{π}{6}]$上單調(diào)遞增
C.把f(x)的圖象向左平移$\frac{π}{12}$個(gè)單位后關(guān)于y軸對(duì)稱
D.f(x)的最小正周期為4π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知y=f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x(1-x),則f(x)的解析式為$f(x)=\left\{\begin{array}{l}{x(1-x),x>0}\\{0,x=0}\\{x(1+x),x<0}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知m、n∈R+,且m+n=2,則mn有最大值1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.經(jīng)過B(1,2)作兩條互相垂直的直線l1和l2,l1交y軸正半軸于點(diǎn)A,l2交x軸正半軸于點(diǎn)C.若存在經(jīng)過O,A,B,C四點(diǎn)的圓C,則圓C半徑的取值范圍是[$\frac{\sqrt{5}}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.將3名男生和4名女生排成一行,甲、乙兩人必須站在兩頭,則不同的排列方法共有( 。┓N.
A.120B.200C.180D.240

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若sinx-2cosx=0,求$\frac{{cos(\frac{π}{2}+x)sin(-π-x)}}{{cos(\frac{11π}{2}-x)sin(\frac{9π}{2}+x)}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若直線2x+y+a=0與圓x2+y2+2x-4y=0相切,則a的值為( 。
A.±$\sqrt{5}$B.±5C.3D.±3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.通過隨機(jī)詢問110名不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),得到如表的列聯(lián)表:
總計(jì)
愛好402060
不愛好203050
總計(jì)6050110
附:Kκ=2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
則有( 。┌盐照f明大學(xué)生“愛好該項(xiàng)運(yùn)動(dòng)是否與性別有關(guān)”.
A.95%B.97.5%C.99%D.99.9%

查看答案和解析>>

同步練習(xí)冊(cè)答案