【題目】莫言是中國(guó)首位獲得諾貝爾文學(xué)獎(jiǎng)的文學(xué)家,國(guó)人歡欣鼓舞。某高校文學(xué)社從男女生中各抽取50名同學(xué)調(diào)查對(duì)莫言作品的了程度,結(jié)果如下:
閱讀過(guò)莫言的作品數(shù)(篇) | 0~25 | 26~50 | 51~75 | 76~100 | 101~130 |
男生 | 3 | 6 | 11 | 18 | 12 |
女生 | 4 | 8 | 13 | 15 | 10 |
(1)試估計(jì)該學(xué)校學(xué)生閱讀莫言作品超過(guò)50篇的概率.
(2)對(duì)莫言作品閱讀超過(guò)75篇的則稱為“對(duì)莫言作品非常了解”,否則為“一般了解”,根據(jù)題意完成下表,并判斷能否有的把握認(rèn)為“對(duì)莫言作品的非常了解”與性別有關(guān)?
非常了解 | 一般了解 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
注:K2=
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
【答案】(1)(2)見(jiàn)解析
【解析】試題分析:(1)根據(jù)古典概型概率公式求出閱讀某莫言作品在篇以上的頻率,從而估計(jì)該校學(xué)生閱讀莫言作品超過(guò)50篇概率;(2)利用公式K2=求得 ,與鄰界值比較,即可得到結(jié)論.
試題解析:(1)由抽樣調(diào)查閱讀莫言作品在50篇以上的頻率為,據(jù)此估計(jì)該校學(xué)生閱讀莫言作品超過(guò)50篇的概率約為;
(2)
非常了解 | 一般了解 | 合計(jì) | |
男生 | 30 | 20 | 50 |
女生 | 25 | 25 | 50 |
合計(jì) | 55 | 45 | 100 |
根據(jù)列聯(lián)表數(shù)據(jù)得
所以沒(méi)有75%的把握認(rèn)為對(duì)莫言作品的非常了解與性別有關(guān).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù),在下列條件下,求實(shí)數(shù)的取值范圍.
(1)零點(diǎn)均大于;
(2)一個(gè)零點(diǎn)大于,一個(gè)零點(diǎn)小于;
(3)一個(gè)零點(diǎn)在內(nèi),另一個(gè)零點(diǎn)在內(nèi).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn),對(duì)任意實(shí)數(shù)滿足,且函數(shù)的最小值為2.
(1)求函數(shù)的解析式;
(2)設(shè)函數(shù),其中,求函數(shù)在區(qū)間上的最小值;
(3)若在區(qū)間上,函數(shù)的圖象恒在函數(shù)的圖象上方,試確定實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工科院校對(duì)A,B兩個(gè)專業(yè)的男女生人數(shù)進(jìn)行調(diào)查,得到如下的列聯(lián)表:
專業(yè)A | 專業(yè)B | 總計(jì) | |
女生 | 12 | 4 | 16 |
男生 | 38 | 46 | 84 |
總計(jì) | 50 | 50 | 100 |
(1)從B專業(yè)的女生中隨機(jī)抽取2名女生參加某項(xiàng)活動(dòng),其中女生甲被選到的概率是多少?
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下,認(rèn)為工科院校中“性別”與“專業(yè)”有關(guān)系呢?
注:K2=
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是正方體ABCD-A1B1C1D1中BC1上的動(dòng)點(diǎn),下列說(shuō)法:
①AP⊥B1C;②BP與CD1所成的角是60°;③三棱錐的體積為定值;④B1P∥平面D1AC;⑤二面角P-AB-C的平面角為45°.
其中正確說(shuō)法的個(gè)數(shù)有 ( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的圓臺(tái)中,AC是下底面圓O的直徑,EF是上底面圓O的直徑,FB是圓臺(tái)的一條母線.
(Ⅰ)已知G,H分別為EC,FB的中點(diǎn),求證:GH∥平面ABC;
(Ⅱ)已知EF=FB=AC=,AB=BC.求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解校園安全教育系列活動(dòng)的成效,對(duì)全校3000名學(xué)生進(jìn)行一次安全意識(shí)測(cè)試,根據(jù)測(cè)試成績(jī)?cè)u(píng)定“優(yōu)秀”、“良好”、“及格”、“不及格”四個(gè)等級(jí),現(xiàn)隨機(jī)抽取部分學(xué)生的答卷,統(tǒng)計(jì)結(jié)果及對(duì)應(yīng)的頻率分布直方圖如下所示.
等級(jí) | 不及格 | 及格 | 良好 | 優(yōu)秀 |
得分 | ||||
頻數(shù) | 6 | 24 |
(1)求的值;
(2)試估計(jì)該校安全意識(shí)測(cè)試評(píng)定為“優(yōu)秀”的學(xué)生人數(shù);
(3)已知已采用分層抽樣的方法,從評(píng)定等級(jí)為“優(yōu)秀”和“良好”的學(xué)生中任選6人進(jìn)行強(qiáng)化培訓(xùn);現(xiàn)再?gòu)倪@6人中任選2人參加市級(jí)校園安全知識(shí)競(jìng)賽,求選取的2人中有1人為“優(yōu)秀”的概率;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某險(xiǎn)種的基本保費(fèi)為a(單位:元),繼續(xù)購(gòu)買該險(xiǎn)種的投保人稱為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:
上年度出險(xiǎn)次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
保費(fèi) | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
隨機(jī)調(diào)查了該險(xiǎn)種的200名續(xù)保人在一年內(nèi)的出險(xiǎn)情況,得到如下統(tǒng)計(jì)表:
出險(xiǎn)次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
頻數(shù) | 60 | 50 | 30 | 30 | 20 | 10 |
(1)記A為事件:“一續(xù)保人本年度的保費(fèi)不高于基本保費(fèi)”,求P(A)的估計(jì)值;
(2)記B為事件:“一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)但不高于基本保費(fèi)的160%”,求P(B)的估計(jì)值;
(3)求續(xù)保人本年度平均保費(fèi)的估計(jì)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為奇函數(shù),且x=-1處取得極大 值2.
(1)求f(x)的解析式;
(2)過(guò)點(diǎn)A(1,t) 可作函數(shù)f(x)圖像的三條切線,求實(shí)數(shù)t的取值范圍;
(3)若對(duì)于任意的恒成立,求實(shí)數(shù)m取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com