【題目】[選修4-4:坐標系與參數(shù)方程]

在直角坐標系中,曲線的參數(shù)方程為為參數(shù));以原點極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

⑴ 求曲線的普通方程與曲線的直角坐標方程;

⑵ 試判斷曲線是否存在兩個交點,若存在求出兩交點間的距離;若不存在,說明理由.

【答案】(1)曲線,曲線;(2).

【解析】

試題(1) 根據(jù)參數(shù)方程與普通方程的關(guān)系,對于曲線消去參數(shù)可得:,再根據(jù)極坐標方程與直角坐標方程的關(guān)系,對于曲線可轉(zhuǎn)化為:;(2) 根據(jù)題意顯然曲線為直線,則其參數(shù)方程可寫為(為參數(shù))與曲線聯(lián)立,可知,所以存在兩個交點,由,,得.

試題解析:(1) 對于曲線,對于曲線.(5)

(2) 顯然曲線為直線,則其參數(shù)方程可寫為(為參數(shù))與曲線聯(lián)立,可知,所以存在兩個交點,

,,得. (10)

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知向量,記

1)若,求的值;

2)在銳角中,角的對邊分別是,且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為普及學生安全逃生知識與安全防護能力,某學校高一年級舉辦了安全知識與安全逃生能力競賽,該競賽分為預(yù)賽和決賽兩個階段,預(yù)賽為筆試,決賽為技能比賽,現(xiàn)將所有參賽選手參加筆試的成績(得分均為整數(shù),滿分為分)進行統(tǒng)計,制成如下頻率分布表.

分數(shù)(分數(shù)段)

頻數(shù)(人數(shù))

頻率

合計

(1)求表中,,,的值;

(2)按規(guī)定,預(yù)賽成績不低于分的選手參加決賽.已知高一(2)班有甲、乙兩名同學取得決賽資格,記高一(2)班在決賽中進入前三名的人數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)若,求的最小值;

(2)若,求的單調(diào)區(qū)間;

(3)試比較的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“既要金山銀山,又要綠水青山”。某風景區(qū)在一個直徑米的半圓形花圓中設(shè)計一條觀光線路。打算在半圓弧上任選一點(與不重合),沿修一條直線段小路,在路的兩側(cè)(注意是兩側(cè))種植綠化帶;再沿弧修一條弧形小路,在小路的一側(cè)(注意是一側(cè))種植綠化帶,小路與綠化帶的寬度忽略不計。

(1)設(shè)(弧度),將綠化帶的總長度表示為的函數(shù);

(2)求綠化帶的總長度的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),且當時, .現(xiàn)已畫出函數(shù)軸左側(cè)的圖象,如圖所示,并根據(jù)圖象:

(1)直接寫出函數(shù) 的增區(qū)間;

(2)寫出函數(shù), 的解析式;

(3)若函數(shù), ,求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.

(1)證明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的方程為,直線過定點,斜率為為何值時,直線與拋物線

1)只有一個公共點;

2)有兩個公共點;

3)沒有公共點?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為橢圓的右焦點,點上,且軸.

(1)求的方程;

(2)過的直線兩點,交直線于點.判定直線的斜率是否依次構(gòu)成等差數(shù)列?請說明理由.

查看答案和解析>>

同步練習冊答案