6.已知數(shù)列{an}的前n項(xiàng)和Sn=3n-1
(1)求a1+a4+a7+…+a3n+1
(2)設(shè)bn=an(log3an+1-log32),求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (1)由數(shù)列的遞推式:當(dāng)n=1時(shí),a1=S1,當(dāng)n≥2時(shí),an=Sn-Sn-1,即可得到{an}的通項(xiàng)公式;
(2)求得bn=2•3n-1•log33n=2n•3n-1.再由數(shù)列的求和方法:錯(cuò)位相減法,結(jié)合等比數(shù)列的求和公式,化簡整理,即可得到所求和.

解答 解:(1)數(shù)列{an}的前n項(xiàng)和Tn滿足Sn=3n-1(n∈N*),
當(dāng)n=1時(shí),a1=S1=2,
當(dāng)n≥2時(shí),bn=Sn-Sn-1=3n-1-(3n-1-1)=2•3n-1.對n=1也成立;
{an}的通項(xiàng)公式為an=2•3n-1;
可得a1+a4+a7+…+a3n+1=$\frac{2(1-2{7}^{n+1})}{1-27}$=$\frac{2{7}^{n+1}-1}{13}$;
(2)bn=an(log3an+1-log32)=2•3n-1•log3$\frac{{a}_{n+1}}{2}$=2•3n-1•log33n=2n•3n-1,
前n項(xiàng)和Tn=2•30+4•31+6•32+…+2n•3n-1
3Tn=2•3+4•32+6•33+…+2n•3n
相減可得-2Tn=2+2(3+32+33+…+3n-1)-2n•3n
=2+2•$\frac{3(1-{3}^{n-1})}{1-3}$-2n•3n
化簡可得Tn=$\frac{1+(2n-1)•{3}^{n}}{2}$.

點(diǎn)評 本題考查數(shù)列的通項(xiàng)公式的求法,注意運(yùn)用數(shù)列的遞推式,考查數(shù)列的求和方法:錯(cuò)位相減法,考查化簡整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-\frac{1}{3}{x}^{2}+3,x∈[-3,0]}\\{\sqrt{9-{x}^{2}},x∈(0,3]}\end{array}\right.$,則${∫}_{-3}^{3}$f(x)dx=6+$\frac{9π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.經(jīng)過點(diǎn)(-1,2)且與直線3x-5y+6=0垂直的直線的方程為( 。
A.3x-5y+13=0B.5x+3y-1=0C.5x+3y+1=0D.5x-3y+11=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)$f(x)=cos(2x-\frac{4π}{3})+2{cos^2}x$.
(1)求函數(shù)f(x)的最大值;
(2)已知△ABC中,角A,B,C為其內(nèi)角,若$f(B+C)=\frac{3}{2}$,求A的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)=xlnx.
(1)求曲線f(x)在x=e處的切線方程.
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知集合A={x|k+1≤x≤2k},B={x|1≤x≤3},則能使A∩B=A成立的實(shí)數(shù)k的取值范圍是$({-∞,\frac{3}{2}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一條漸近線方程為$\sqrt{5}x-2y=0$,則雙曲線的離心率為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個(gè)焦點(diǎn)為F(-1,0),離心率e=$\frac{1}{2}$左右頂點(diǎn)分別為A、B,經(jīng)過點(diǎn)F的直線l與橢圓M交于C、D兩點(diǎn)(與A、B不重合).
(I)求橢圓M的方程;
(II)記△ABC與△ABD的面積分別為S1和S2,求|S1-S2|的最大值,并求此時(shí)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)正實(shí)數(shù)集合A={a1,a2,a3,…,an},集合S={(a,b)|a∈A,b∈A,a-b∈A},則集合S中元素最多有$\frac{n(n-1)}{2}$個(gè).

查看答案和解析>>

同步練習(xí)冊答案