【題目】已知橢圓的左、右焦點分別為,點是橢圓上的點,離心率.

(1)求橢圓的方程;

(2)點在橢圓上,若點與點關(guān)于原點對稱,連接并延長與橢圓的另一個交點為,連接,求面積的最大值.

【答案】(1)(2)

【解析】試題分析:(1)根據(jù)條件列出關(guān)于兩個方程,解方程組可得值,即得橢圓的方程;(2)聯(lián)立直線方程與橢圓方程,利用韋達(dá)定理及弦長公式可得底邊長(用直線斜率表示),根據(jù)點到直線距離公式可得三角形的高(用直線斜率表示),根據(jù)三角形面積公式可得面積,關(guān)于直線斜率的函數(shù)關(guān)系式,最后根據(jù)分式函數(shù)求值域方法求函數(shù)最值,注意討論斜率不存在的情形.

試題解析:(1)依題意,,,,解得。

故橢圓的方程為.

(2)當(dāng)直線的斜率不存在時,不妨取,

.

②當(dāng)直線的斜率存在時,設(shè)直線的方程為,

聯(lián)立方程化簡得

設(shè),則

,

到直線的距離

因為是線段的中點,所以點到直線的距離為,

.

綜上,面積的最大值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是一個公差大于0的等差數(shù)列,且滿足,a2+a7=16

1)求數(shù)列{an}的通項公式;

2)數(shù)列{an}和數(shù)列{bn}滿足等式 nN*),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為的圓形紙板內(nèi)有一個相同圓心的半徑為的小圓,現(xiàn)將半徑為的一枚硬幣拋到此紙板上,使整塊硬幣完全隨機落在紙板內(nèi),則硬幣與小圓無公共點的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為倡導(dǎo)全體學(xué)生為特困學(xué)生捐款,舉行“一元錢,一片心,誠信用水”活動,學(xué)生在購水處每領(lǐng)取一瓶礦泉水,便自覺向捐款箱中至少投入一元錢.現(xiàn)統(tǒng)計了連續(xù)5天的售出和收益情況,如表:

售出水量x(單位:箱)

7

6

6

5

6

收益y(單位:元)

165

142

148

125

150


(1)求y關(guān)于x的線性回歸方程;
(2)預(yù)測售出8箱水的收益是多少元?
附:回歸直線的斜率和截距的最小二乘法估計公式分別為: = , = ,
參考數(shù)據(jù):7×165+6×142+6×148+5×125+6×150=4420.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個銷售季度內(nèi),每售出該產(chǎn)品獲利潤500元,未售出的產(chǎn)品,每虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直圖,如圖所示.經(jīng)銷商為下一個銷售季度購進(jìn)了該農(nóng)產(chǎn)品.以)表示下一個銷售季度內(nèi)的市場需求量, (單位:元)表示下一個銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤.

(Ⅰ)將表示為的函數(shù);

(Ⅱ)根據(jù)直方圖估計利潤不少于57000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的空間幾何體中,底面四邊形為正方形, ,平面平面, , .

(1)求二面角的大;

(2)若在平面上存在點,使得平面,試通過計算說明點的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,已知 tanAtanB﹣tanA﹣tanB=
(1)求∠C的大;
(2)設(shè)角A,B,C的對邊依次為a,b,c,若c=2,且△ABC是銳角三角形,求a2+b2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【廣東省惠州市2017屆高三上學(xué)期第二次調(diào)研】已知點,點是圓上的任意一點,線段的垂直平分線與直線交于點

)求點的軌跡方程

)若直線與點的軌跡有兩個不同的交點,且原點總在以為直徑的圓的內(nèi)部,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,∠BAC=90°,AB=AC=2, .M,N分別為BC和CC1的中點,P為側(cè)棱BB1上的動點.

(1)求證:平面APM⊥平面BB1C1C;
(2)若P為線段BB1的中點,求證:A1N∥平面APM;
(3)試判斷直線BC1與平面APM是否能夠垂直.若能垂直,求PB的值;若不能垂直,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案