3.已知橢圓:$\frac{{x}^{2}}{k}$+$\frac{{y}^{2}}{2}$=1,若橢圓的焦距為2,則k為( 。
A.1或3B.1C.3D.6

分析 利用橢圓的簡單性質(zhì)直接求解.

解答 解:①橢圓$\frac{{x}^{2}}{k}$+$\frac{{y}^{2}}{2}$=1,中a2=2,b2=k,
則c=$\sqrt{2-k}$,
∴2c=2$\sqrt{2-k}$=2,
解得k=1.
②橢圓$\frac{{x}^{2}}{k}$+$\frac{{y}^{2}}{2}$=1,中a2=k,b2=2,
則c=$\sqrt{k-2}$,
∴2c=2$\sqrt{k-2}$=2,
解得k=3.
綜上所述,k的值是1或3.
故選:A.

點(diǎn)評(píng) 本題考查橢圓的簡單性質(zhì),考查對(duì)橢圓的標(biāo)準(zhǔn)方程中各字母的幾何意義,屬于簡單題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知tanθ+$\frac{1}{tanθ}$=2.
(1)求sinθcosθ的值;
(2)求sinθ+cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.當(dāng)x<0時(shí),ax>1成立,其中a>0且a≠1,則不等式logax>0的解集是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知集合U=R,A={x|-1≤x<3},B={x|2x-4≥x-2}.
(1)求A∩B,(∁UA)∪B;
(2)若集合C={x|2x+a>0},滿足B∪C=C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.把紅、黑、白、藍(lán)4張紙牌隨機(jī)地分給甲、乙、丙、丁4個(gè)人,每個(gè)人分得1張,事件“甲分得紅牌”與“乙分得紅牌”是③.(請(qǐng)?zhí)钊胝_的序號(hào))
①對(duì)立事件     ②不可能事件  ③互斥但不對(duì)立事件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.將甲、乙兩顆骰子先后各拋一次,a、b分別表示拋擲甲、乙兩顆骰子所出現(xiàn)的點(diǎn)數(shù)﹒圖中三角形陰影部分的三個(gè)頂點(diǎn)為(0,0)、(4,0)和(0,4).
(1)若點(diǎn)P(a,b)落在如圖陰影所表示的平面區(qū)域(包括邊界)的事件記為A,求事件A的概率;
(2)若點(diǎn)P(a,b)落在直線x+y=m(m為常數(shù))上,且使此事件的概率P最大,求m和P的值﹒

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)計(jì)算C104-C73A33
(2)解關(guān)于x的方程:3A8x=4A9x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知二次函數(shù)y=-x2+2x+3
(1)求出該二次函數(shù)圖象的頂點(diǎn)坐標(biāo)和對(duì)稱軸;
(2)在所給坐標(biāo)系中畫出二次函數(shù)y═-x2+2x+3的圖象.
(3)觀察圖象,當(dāng)y>0,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知a=log32,那么用a表示log38-log3$\frac{3}{4}$是(  )
A.a-2B.5a-1C.3a-(1+a)2D.3a-a2-1

查看答案和解析>>

同步練習(xí)冊答案