13.如圖,在幾何體ABCDEF中,底面ABCD為矩形,EF∥CD,AD⊥FC.點(diǎn)M在棱FC上,平面ADM與棱FB交于點(diǎn)N.
(Ⅰ)求證:AD∥MN;
(Ⅱ)求證:平面ADMN⊥平面CDEF;
(Ⅲ)若CD⊥EA,EF=ED,CD=2EF,平面ADE∩平面BCF=l,求二面角A-l-B的大。

分析 (Ⅰ)通過證明AD∥BC,推出AD∥平面FBC,然后證明平AD∥MN.
(Ⅱ)證明AD⊥CD,結(jié)合AD⊥FC,說明AD⊥平面CDEF,然后證明平面ADMN⊥平面CDEF.
(Ⅲ)說明DA,DC,DE兩兩互相垂直,建立空間直角坐標(biāo)系D-xyz,不妨設(shè)EF=ED=1,求出相關(guān)的坐標(biāo),求出平面FBC的法向量,平面ADE的法向量,通過向量的數(shù)量積求解二面角A-l-B的平面角的大小即可.

解答 (本小題滿分14分)
(Ⅰ)證明:因?yàn)锳BCD為矩形,所以AD∥BC,[(1分)]
所以AD∥平面FBC.[(3分)]
又因?yàn)槠矫鍭DMN∩平面FBC=MN,
所以AD∥MN.[(4分)]
(Ⅱ)證明:因?yàn)锳BCD為矩形,所以AD⊥CD.[(5分)]
因?yàn)锳D⊥FC,[(6分)]
所以AD⊥平面CDEF.[(7分)]
所以平面ADMN⊥平面CDEF.[(8分)]
(Ⅲ)解:因?yàn)镋A⊥CD,AD⊥CD,
所以CD⊥平面ADE,
所以CD⊥DE.
由(Ⅱ)得AD⊥平面CDEF,
所以AD⊥DE.
所以DA,DC,DE兩兩互相垂直.[(9分)]
建立空間直角坐標(biāo)系D-xyz.[(10分)]
不妨設(shè)EF=ED=1,則CD=2,設(shè)AD=a(a>0).
由題意得,A(a,0,0),B(a,2,0),C(0,2,0),D(0,0,0),E(0,0,1),F(xiàn)(0,1,1).
所以$\overrightarrow{CB}$=(a,0,0),$\overrightarrow{CF}$=(0,-1,1).
設(shè)平面FBC的法向量為$\overrightarrow{n}$=(x,y,z),則
$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CB}=0}\\{\overrightarrow{n}•\overrightarrow{CF}=0}\end{array}\right.$即$\left\{{\begin{array}{l}{ax=0}\\{-y+z=0}\end{array}}\right.$令z=1,則y=1.
所以$\overrightarrow{n}$=(0,1,1).[(12分)]
又平面ADE的法向量為$\overrightarrow{DC}$=(0,2,0),所以
$|cos<\overrightarrow{n},\overrightarrow{DC}>|$=$\frac{|\overrightarrow{n}•\overrightarrow{DC}|}{|\overrightarrow{n}||\overrightarrow{DC}|}$=$\frac{\sqrt{2}}{2}$.
因?yàn)槎娼茿-l-B的平面角是銳角,
所以二面角A-l-B的大小45°.[(14分)]

點(diǎn)評 本題考查直線與平面垂直的判定定理以及平面與平面垂直的判定定理的應(yīng)用,二面角的平面角的求法,考查空間想象能力以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.給出計算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{2018}$的值的一個程序框圖如圖,其中判斷框內(nèi)應(yīng)填入的條件是( 。
A.i>1009?B.i<1009?C.i>2018?D.i<2018?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.定義在R上的函數(shù)f(x)滿足f(x+4)=f(x),f(x)=$\left\{\begin{array}{l}-{x^2}+1,\;\;-1≤x≤1\\-|{x-2}|+1,\;1<x≤3\end{array}$.若關(guān)于x的方程f(x)-ax=0有5個不同實(shí)根,則正實(shí)數(shù)a的取值范圍是( 。
A.$({\frac{1}{4},\frac{1}{3}})$B.$({\frac{1}{6},\frac{1}{4}})$C.$({16-6\sqrt{7},\frac{1}{6}})$D.$({\frac{1}{6},8-2\sqrt{15}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知A、B為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左右頂點(diǎn),F(xiàn)1,F(xiàn)2為其左右焦點(diǎn),雙曲線的漸近線上一點(diǎn)P(x0,y0)(x0<0,y0>0),滿足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$=0,且∠PBF1=45°,則雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{5}+1}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在復(fù)平面內(nèi),復(fù)數(shù)z對應(yīng)的點(diǎn)是Z(1,-2),則復(fù)數(shù)z的共軛復(fù)數(shù)$\overline z$=( 。
A.1+2iB.1-2iC.2+iD.2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)命題p:?x>0,log2x<2x+3,則¬p為( 。
A.?x>0,log2x≥2x+3B.?x>0,log2x≥2x+3C.?x>0,log2x<2x+3D.?x<0,log2x≥2x+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若拋物線y2=ax的焦點(diǎn)到其準(zhǔn)線的距離是2,則a=(  )
A.±1B.±2C.±4D.±8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若二次函數(shù)f(x)=ax2+bx+c(a≤b)的值域?yàn)閇0,+∞),則$\frac{b-a}{a+b+c}$的最大值是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在四棱錐P-ABCD中,PA⊥AD,PA=1,PC=PD,底面ABCD是梯形,AB∥CD,AB⊥BC,AB=BC=1,CD=2.
(1)求證:PA⊥AB;
(2)設(shè)M為PD的中點(diǎn),求三棱錐M-PAB的體積.

查看答案和解析>>

同步練習(xí)冊答案