12.已知函數(shù)f(x)=(x2-2x)sin(x-1)+x+1在[-1,3]上的最大值為M,最小值為m,則M+m=4.

分析 把函數(shù)解析式變形,可得f(x)=[(x-1)2-1]sin(x-1)+x-1+2,令g(x)=(x-1)2sin(x-1)-sin(x-1)+(x-1),結(jié)合g(2-x)+g(x)=0,可得g(x)關(guān)于(1,0)中心對稱,則f(x)在[-1,3]上關(guān)于(1,2)中心對稱,從而求得M+m的值.

解答 解:∵f(x)=(x2-2x)sin(x-1)+x+1=[(x-1)2-1]sin(x-1)+x-1+2
令g(x)=(x-1)2sin(x-1)-sin(x-1)+(x-1),
而g(2-x)=(x-1)2sin(1-x)-sin(1-x)+(1-x),
∴g(2-x)+g(x)=0,
則g(x)關(guān)于(1,0)中心對稱,則f(x)在[-1,3]上關(guān)于(1,2)中心對稱.
∴M+m=4.
故答案為:4.

點評 本題考查函數(shù)在閉區(qū)間上的最值,考查函數(shù)奇偶性性質(zhì)的應(yīng)用,考查數(shù)學(xué)轉(zhuǎn)化思想方法,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=sinx-$\sqrt{3}$cosx(x∈R)的最大值是(  )
A.1B.2C.$-\frac{1}{4}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.把復(fù)數(shù)z的共軛復(fù)數(shù)記作$\overline z$,已知$(1+2i)\overline z=4+3i$,求z及$\frac{z}{\overline z}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)函數(shù)f′(x)是奇函數(shù)y=f(x)(x∈R)的導(dǎo)函數(shù),f(-1)=0,當x>0時,xf′(x)+f(x)>0,則使得f(x)>0成立的x的取值范圍是( 。
A.(-∞,-1)∪(0,1)B.(0,1)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(-1,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知sin(π-α)=log27$\frac{1}{9},且α∈(-\frac{π}{2},0)$,則tanα=$-\frac{{2\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若a>0,b>0,且42a+b=2ab,則a+b的最小值是( 。
A.12B.6+2$\sqrt{2}$C.6+4$\sqrt{2}$D.6+4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=sinx-$\frac{2}{5π}$x零點的個數(shù)是(  )
A.4B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.富華中學(xué)的一個文學(xué)興趣小組中,三位同學(xué)張博源、高家銘和劉雨恒分別從莎士比亞、雨果和曹雪芹三位名家中選擇了一位進行性格研究,并且他們選擇的名家各不相同.三位同學(xué)一起來找圖書管理員劉老師,讓劉老師猜猜他們?nèi)烁髯缘难芯繉ο螅畡⒗蠋煵铝巳湓挘骸阿購埐┰囱芯康氖巧勘葋啠虎趧⒂旰阊芯康目隙ú皇遣苎┣;③高家銘自然不會研究莎士比亞.”很可惜,劉老師的這種猜法,只猜對了一句,據(jù)此可以推知張博源、高家銘和劉雨恒分別研究的是(  )
A.曹雪芹、莎士比亞、雨果B.雨果、莎士比亞、曹雪芹
C.莎士比亞、雨果、曹雪芹D.曹雪芹、雨果、莎士比亞

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{y≤x}\\{y≥\frac{1}{2}x}\\{x+y≤2}\end{array}\right.$,則目標函數(shù)z=x+y的最大值為2.

查看答案和解析>>

同步練習(xí)冊答案