7.富華中學的一個文學興趣小組中,三位同學張博源、高家銘和劉雨恒分別從莎士比亞、雨果和曹雪芹三位名家中選擇了一位進行性格研究,并且他們選擇的名家各不相同.三位同學一起來找圖書管理員劉老師,讓劉老師猜猜他們三人各自的研究對象.劉老師猜了三句話:“①張博源研究的是莎士比亞;②劉雨恒研究的肯定不是曹雪芹;③高家銘自然不會研究莎士比亞.”很可惜,劉老師的這種猜法,只猜對了一句,據(jù)此可以推知張博源、高家銘和劉雨恒分別研究的是( 。
A.曹雪芹、莎士比亞、雨果B.雨果、莎士比亞、曹雪芹
C.莎士比亞、雨果、曹雪芹D.曹雪芹、雨果、莎士比亞

分析 分別假設①,②,③正確,推導各人研究對象,得出結論.

解答 解:(1)若①為真,則③為真,不符合題意,故①為假,即張博源研究的是曹雪芹或雨果;
(2)若②為真,則③為假,則張博源研究的是曹雪芹,高家銘研究莎士比亞,劉雨研究雨果,符合題意;
(3)若③為真,則②為假,故而劉雨研究曹雪芹,張博源研究雨果,高家銘研究莎士比亞,此時得出③為假,矛盾.
綜上,張博源研究的是曹雪芹,高家銘研究莎士比亞,劉雨研究雨果.
故選A.

點評 本題考查了合情推理,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.k>3是方程$\frac{x^2}{k-3}-\frac{y^2}{k+3}=1$表示雙曲線的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知函數(shù)f(x)=(x2-2x)sin(x-1)+x+1在[-1,3]上的最大值為M,最小值為m,則M+m=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知向量$\overrightarrow{a}$,$\overrightarrow{e}$,|$\overrightarrow{e}$|=1,f(x)=|$\overrightarrow{a}-x\overrightarrow{e}$|是定義在R上的函數(shù),
(1)若f(x)≥f(1)對所有x∈R都成立,求證:($\overrightarrow{a}-\overrightarrow{e}$)⊥$\overrightarrow{e}$;
(2)求當x取何值時,f(x)取到最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.利用獨立性檢驗來考慮兩個分類變量X和Y是否有關系時,通過查閱下表來確定斷言“X和Y有關系”的可信度.如果k>5.024,那么就有把握認為“X和Y有關系”的百分比為97.5%.
P(K2≥k)0.500.400.250.150.10
k0.4550.7081.3232.0722.706
P(K2≥k)0.050.0250.010.0050.001
k3.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.在一圓柱中挖去一圓錐所得的工藝部件的三視圖如圖所示,則此工藝部件的表面積為( 。
A.(7+$\sqrt{5}$)πB.(7+2$\sqrt{5}$)πC.(8+$\sqrt{5}$)πD.(8+2$\sqrt{5}$)π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.如圖(1),五邊形PABCD是由一個正方形與一個等腰三角形拼接而成,其中∠APD=120°,AB=2,現(xiàn)將△PAD進行翻折,使得平面PAD⊥平面ABCD,連接PB,PC,所得四棱錐P-ABCD如圖(2)所示,則四棱錐P-ABCD的外接球的表面積為( 。
A.$\frac{14}{3}π$B.$\frac{7}{3}π$C.$\frac{28}{3}π$D.14π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知圓錐的側面展開圖是一個半圓;
(1)求圓錐的母線與底面所成的角;
(2)過底面中心O1且平行于母線AB的截平面,若截面與圓錐側面的交線是焦參數(shù)(焦點到準線的距離)為p的拋物線,求圓錐的全面積;
(3)過底面點C作垂直且于母線AB的截面,若截面與圓錐側面的交線是長軸為2a的橢圓,求橢圓的面積(橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的面積S=πab).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.把曲線的極坐標方程ρ=8sinθ化為直角坐標方程式( 。
A.x2+y2=4B.x2+(y-4)2=16C.x2+y2=1D.y=2x2

查看答案和解析>>

同步練習冊答案