分析 由已知及三角形內(nèi)角和定理可求B的值,進(jìn)而利用正弦定理可求b的值.
解答 解:∵A=75°,C=60°,c=1,
∴B=180°-A-C=45°,
∴由正弦定理可得:b=$\frac{csinB}{sinC}$=$\frac{1×\frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{2}}$=$\frac{{\sqrt{6}}}{3}$.
故答案為:$\frac{{\sqrt{6}}}{3}$.
點(diǎn)評(píng) 本題主要考查了三角形內(nèi)角和定理,正弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
x | $-\sqrt{2}$ | 2 | $\sqrt{6}$ | 9 |
y | $\sqrt{3}$ | $-\sqrt{2}$ | -1 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{{{(x+1)}^2}}}{4}-\frac{{{{(y+2)}^2}}}{9}=1$ | B. | $\frac{{{{(x-1)}^2}}}{4}-\frac{{{{(y-2)}^2}}}{9}=1$ | C. | $\frac{{{{(x+1)}^2}}}{4}+\frac{{{{(y+2)}^2}}}{9}=1$ | D. | $\frac{{{{(x-1)}^2}}}{4}+\frac{{{{(y-2)}^2}}}{9}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
PM2.5日均值k(微克) | 空氣質(zhì)量等級(jí) |
k≤35 | 一級(jí) |
35<k<75 | 二級(jí) |
k>75 | 超標(biāo) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 異面 | B. | 垂直 | ||
C. | 平行 | D. | 平行或異面或相交 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a<3 | B. | a>3 | C. | a≤3 | D. | a≥3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com