分析 (Ⅰ)消去參數(shù)得到直線l的普通方程、利用極坐標(biāo)與直角坐標(biāo)的互化方法,求出曲線C的直角坐標(biāo)方程;
(Ⅱ)由題意,直線l的方程為x+y-1=0,與x2=4y聯(lián)立可得x2+4x-4=0,求出Q的坐標(biāo),即可求|PQ|的值.
解答 解:(Ⅰ)傾斜角為α(α≠$\frac{π}{2}$)的直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù)),普通方程為y=tanα(x-1).
曲線C的極坐標(biāo)方程是ρcos2θ-4sinθ=0,直角坐標(biāo)方程x2=4y;
(Ⅱ)由題意,直線l的方程為x+y-1=0,與x2=4y聯(lián)立可得x2+4x-4=0,
∴線段AB的中點(diǎn)的橫坐標(biāo)為-2,縱坐標(biāo)為3,即Q(-2,3),
∴|PQ|=$\sqrt{(1+2)^{2}+(0-3)^{2}}$=3$\sqrt{2}$.
點(diǎn)評(píng) 本題考查參數(shù)方程、極坐標(biāo)方程、直角坐標(biāo)方程的互化,考查直線與拋物線的位置關(guān)系,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ϕ | B. | {1,2} | C. | {-1,1,2} | D. | {2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 輸出的數(shù)組都是勾股數(shù) | B. | 任意正整數(shù)都是勾股數(shù)組中的一個(gè) | ||
C. | 相異兩正整數(shù)都可以構(gòu)造出勾股數(shù) | D. | 輸出的結(jié)果中一定有a<b<c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com